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New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed
versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The
second volume is for programmers. The third volume is reference material. We’ve also added
a fourth volume for developers. All of these changes represent an experiment in print-on-
demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))



Chapter 1

Axiom Features

1.1 Introduction to Axiom

Welcome to the world of Axiom. We call Axiom a scientific computation system: a self-
contained toolbox designed to meet your scientific programming needs, from symbolics, to
numerics, to graphics.

This introduction is a quick overview of some of the features Axiom offers.

1.1.1 Symbolic Computation

Axiom provides a wide range of simple commands for symbolic mathematical problem solv-
ing. Do you need to solve an equation, to expand a series, or to obtain an integral? If so,
just ask Axiom to do it.

Given ∫ (
1

(x3 (a+ bx)
1/3

)

)
dx

we would enter this into Axiom as:

integrate(1/(x**3 * (a+b*x)**(1/3)),x)

which would give the result:

−2 b2 x2
√
3 log

(
3
√
a

3
√
b x+ a

2
+ 3
√
a
2 3
√
b x+ a+ a

)
+

4 b2 x2
√
3 log

(
3
√
a
2 3
√
b x+ a− a

)
+

12 b2 x2 arctan

(
2
√
3 3
√
a
2 3
√
b x+ a+ a

√
3

3 a

)
+

(12 b x− 9 a)
√
3 3
√
a

3
√
b x+ a

2


18 a2 x2

√
3 3
√
a

1
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Type: Union(Expression Integer,...)

Axiom provides state-of-the-art algebraic machinery to handle your most advanced symbolic
problems.

1.1.2 Numeric Computation

Axiom has a numerical library that includes operations for linear algebra, solution of equa-
tions, and special functions. For many of these operations, you can select any number of
floating point digits to be carried out in the computation.

Solve x49 − 49x4 + 9 to 49 digits of accuracy. First we need to change the default output
length of numbers:

digits(49)

and then we execute the command:

solve(x**49-49*x**4+9 = 0,1.e-49)

[x = −0.6546536706904271136718122105095984761851224331556,

x = 1.086921395653859508493939035954893289009213388763,

x = 0.6546536707255271739694686066136764835361487607661]

Type: List Equation Polynomial Float

The output of a computation can be converted to FORTRAN to be used in a later numerical
computation. Besides floating point numbers, Axiom provides literally dozens of kinds of
numbers to compute with. These range from various kinds of integers, to fractions, complex
numbers, quaternions, continued fractions, and to numbers represented with an arbitrary
base.

What is 10 to the 90-th power in base 32?

radix(10**90,32)

returns:

FMM3O955CSEIV0ILKH820CN3I7PICQU0OQMDOFV6TP000000000000000000

Type: RadixExpansion 32

The Axiom numerical library can be enhanced with a substantial number of functions from
the NAG library of numerical and statistical algorithms. These functions will provide cov-
erage of a wide range of areas including roots of functions, Fourier transforms, quadrature,
differential equations, data approximation, non-linear optimization, linear algebra, basic
statistics, step-wise regression, analysis of variance, time series analysis, mathematical pro-
gramming, and special functions. Contact the Numerical Algorithms Group Limited, Oxford,
England.

1.1.3 Mathematical Structures

Axiom also has many kinds of mathematical structures. These range from simple ones (like
polynomials and matrices) to more esoteric ones (like ideals and Clifford algebras). Most
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structures allow the construction of arbitrarily complicated “types.”

Even a simple input expression can result in a type with several levels.

matrix [ [x + %i,0], [1,-2] ] [
x+%i 0

1 −2

]
Type: Matrix Polynomial Complex Integer

The “%i” is Axiom’s notation for
√
−1.

The Axiom interpreter builds types in response to user input. Often, the type of the result
is changed in order to be applicable to an operation.

The inverse operation requires that elements of the above matrices are fractions. However
the original elements are polynomials with coefficients which are complex numbers (Com-
plex(Integer)) in Axiom terms. Inverse will coerce these to fractions whose numerator and
denominator are polynomials with coefficients which are complex numbers.

inverse(%)  1

x+%i
0

1

2 x+ 2%i
−1

2


Type: Union(Matrix Fraction Polynomial Complex Integer,...)

1.1.4 HyperDoc

HyperDoc presents you windows on the world of Axiom, offering on-line help, examples,
tutorials, a browser, and reference material. HyperDoc gives you on-line access to this
document in a “hypertext” format. Words that appear in a different font (for example,
Matrix, factor, and category) are generally mouse-active; if you click on one with your
mouse, HyperDoc shows you a new window for that word.

As another example of a HyperDoc facility, suppose that you want to compute the roots of
x49−49x4+9 to 49 digits (as in our previous example) and you don’t know how to tell Axiom
to do this. The “basic command” facility of HyperDoc leads the way. Through the series of
HyperDoc windows and mouse clicks, you and HyperDoc generate the correct command to
issue to compute the answer.

1.1.5 Interactive Programming

Axiom’s interactive programming language lets you define your own functions. A simple
example of a user-defined function is one that computes the successive Legendre polynomials.
Axiom lets you define these polynomials in a piece-wise way. The first Legendre polynomial.

p(0) == 1

Type: Void

The second Legendre polynomial.

p(1) == x
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Figure 1.1: Hyperdoc opening menu

Type: Void

The n-th Legendre polynomial for (n > 1).

p(n) == ((2*n-1)*x*p(n-1) - (n-1) * p(n-2))/n

Type: Void

In addition to letting you define simple functions like this, the interactive language can be
used to create entire application packages.

The above definitions for p do no computation—they simply tell Axiom how to compute
p(k) for some positive integer k.

To actually get a value of a Legendre polynomial, you ask for it.

What is the tenth Legendre polynomial?

p(10)

Compiling function p with type Integer -> Polynomial Fraction

Integer

Compiling function p as a recurrence relation.

46189

256
x10 − 109395

256
x8 +

45045

128
x6 − 15015

128
x4 +

3465

256
x2 − 63

256

Type: Polynomial Fraction Integer
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Axiom applies the above pieces for p to obtain the value of p(10). But it does more: it
creates an optimized, compiled function for p. The function is formed by putting the pieces
together into a single piece of code. By compiled, we mean that the function is translated
into basic machine-code. By optimized, we mean that certain transformations are performed
on that code to make it run faster. For p, Axiom actually translates the original definition
that is recursive (one that calls itself) to one that is iterative (one that consists of a simple
loop).

What is the coefficient of x90 in p(90)?

coefficient(p(90),x,90)

5688265542052017822223458237426581853561497449095175

77371252455336267181195264

Type: Polynomial Fraction Integer

In general, a user function is type-analyzed and compiled on first use. Later, if you use it
with a different kind of object, the function is recompiled if necessary.

1.1.6 Graphics

You may often want to visualize a symbolic formula or draw a graph from a set of numerical
values. To do this, you can call upon the Axiom graphics capability.

Axiom is capable of displaying graphs in two or three dimensions and multiple curves can
be drawn on the same graph. The whole graphics package can be driven from interactive
commands.

Graphs in Axiom are interactive objects you can manipulate with your mouse. Just click
on the graph, and a control panel pops up. Using this mouse and the control panel, you
can translate, rotate, zoom, change the coloring, lighting, shading, and perspective on the
picture. You can also generate a PostScript copy of your graph to produce hard-copy output.

The graphics package runs as a separate process. It interacts with both the Axiom interpreter
and the Hyperdoc facility. In Hyperdoc you can click on an embedded graph and it will
become “live” so you can rotate and translate it.

For example, there is a differential equation known as Bessel’s equation which is

z2
d2y

dz2
+ z

dy

dz
+ (z2 − v2)y = 0

We can plot a solution to this equation in Axiom with the command:

draw(5*besselJ(0,sqrt(x**2+y**2)), x=-20..20, y=-20..20)

Draw J0(
√

x2 + y2) for −20 ≤ x, y ≤ 20.

1.1.7 Data Structures

A variety of data structures are available for interactive use. These include strings, lists,
vectors, sets, multisets, and hash tables. A particularly useful structure for interactive use
is the infinite stream:

Create the infinite stream of derivatives of Legendre polynomials.



6 CHAPTER 1. AXIOM FEATURES

Figure 1.2: J0(
√
x2 + y2) for −20 ≤ x, y ≤ 20

[D(p(i),x) for i in 1..][
1, 3 x,

15

2
x2 − 3

2
,
35

2
x3 − 15

2
x,

315

8
x4 − 105

4
x2 +

15

8
,

693

8
x5 − 315

4
x3 +

105

8
x,

3003

16
x6 − 3465

16
x4 +

945

16
x2 − 35

16
,

6435

16
x7 − 9009

16
x5 +

3465

16
x3 − 315

16
x,

109395

128
x8 − 45045

32
x6 +

45045

64
x4 − 3465

32
x2 +

315

128
,

230945

128
x9 − 109395

32
x7 +

135135

64
x5 − 15015

32
x3 +

3465

128
x, . . .

]
Type: Stream Polynomial Fraction Integer

Streams display only a few of their initial elements. Otherwise, they are “lazy”: they only
compute elements when you ask for them.

Data structures are an important component for building application software. Advanced
users can represent data for applications in an optimal fashion. In all, Axiom offers over
forty kinds of aggregate data structures, ranging from mutable structures (such as cyclic
lists and flexible arrays) to storage efficient structures (such as bit vectors). As an example,
streams are used as the internal data structure for power series.

What is the series expansion of log(cot(x)) about x = π/2?

series(log(cot(x)),x = %pi/2)
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log

(
−2 x+ π

2

)
+

1

3

(
x− π

2

)2
+

7

90

(
x− π

2

)4
+

62

2835

(
x− π

2

)6
+

127

18900

(
x− π

2

)8
+

146

66825

(
x− π

2

)10
+O

((
x− π

2

)11)
Type: GeneralUnivariatePowerSeries(Expression Integer,x,pi/2)

Series and streams make no attempt to compute all their elements! Rather, they stand ready
to deliver elements on demand.

What is the coefficient of the 50-th term of this series?

coefficient(%,50)

44590788901016030052447242300856550965644

7131469286438669111584090881309360354581359130859375

Type: Expression Integer

Note the use of “%” here. This means the value of the last expression we computed. In this
case it is the long expression above.

1.1.8 Pattern Matching

A convenient facility for symbolic computation is “pattern matching.” Suppose you have a
trigonometric expression and you want to transform it to some equivalent form. Use a rule
command to describe the transformation rules you need. Then give the rules a name and
apply that name as a function to your trigonometric expression.

Here we introduce two rewrite rules. These are given in a “pile” syntax using indentation.
We store them in a file in the following form:

sinCosExpandRules := rule

sin(x+y) == sin(x)*cos(y) + sin(y)*cos(x)

cos(x+y) == cos(x)*cos(y) - sin(x)*sin(y)

sin(2*x) == 2*sin(x)*cos(x)

cos(2*x) == cos(x)**2 - sin(x)**2

Then we use the )read command to read the input file. The )read command yields:

{sin(y + x) == cos(x)sin(y) + cos(y)sin(x),

cos(y + x) == - sin(x)sin(y) + cos(x)cos(y),

sin(2x) == 2cos(x)sin(x),

2 2

cos(2x) == - sin(x) + cos(x) }

Type: Ruleset(Integer,Integer,Expression Integer)

Now we can apply the rules to a simple trigonometric expression.

sinCosExpandRules(sin(a+2*b+c))
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−cos (a) sin (b)2 − 2 cos (b) sin (a) sin (b) + cos (a) cos (b)

2
)
sin (c)−

cos (c) sin (a) sin (b)
2
+ 2 cos (a) cos (b) cos (c) sin (b)+

cos (b)
2
cos (c) sin (a)

Type: Expression Integer

Using input files and the )read command, you can create your own library of transformation
rules relevant to your applications, then selectively apply the rules you need.

1.1.9 Polymorphic Algorithms

All components of the Axiom algebra library are written in the Axiom library language called
Spad.1 This language is similar to the interactive language except for protocols that authors
are obliged to follow. The library language permits you to write “polymorphic algorithms,”
algorithms defined to work in their most natural settings and over a variety of types.

Here we define a system of polynomial equations S.

S := [3*x**3 + y + 1 = 0,y**2 = 4][
y + 3 x3 + 1 = 0, y2 = 4

]
Type: List Equation Polynomial Integer

And then we solve the system S using rational number arithmetic and 30 digits of accuracy.

solve(S,1/10**30)[[
y = −2, x =

1757879671211184245283070414507

2535301200456458802993406410752

]
, [y = 2, x = −1]

]
Type: List List Equation Polynomial Fraction Integer

Or we can solve S with the solutions expressed in radicals.

radicalSolve(S)[
[y = 2, x = −1],

[
y = 2, x =

−
√
−3 + 1

2

]
,

[
y = 2, x =

√
−3 + 1

2

]
,

[
y = −2, x =

1
3
√
3

]
,

[
y = −2, x =

√
−1
√
3− 1

2 3
√
3

]
,

[
y = −2, x =

−
√
−1
√
3− 1

2 3
√
3

]]
Type: List List Equation Expression Integer

While these solutions look very different, the results were produced by the same internal
algorithm! The internal algorithm actually works with equations over any “field.” Examples
of fields are the rational numbers, floating point numbers, rational functions, power series,
and general expressions involving radicals.

1 Spad is short for Scratchpad which was the original name of the Axiom system
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1.1.10 Extensibility

Users and system developers alike can augment the Axiom library, all using one common
language. Library code, like interpreter code, is compiled into machine binary code for
run-time efficiency.

Using this language, you can create new computational types and new algorithmic packages.
All library code is polymorphic, described in terms of a database of algebraic properties.
By following the language protocols, there is an automatic, guaranteed interaction between
your code and that of colleagues and system implementers.

1.1.11 Open Source

Axiom is completely open source. All of the algebra and all of the source code for the
interpreter, compiler, graphics, browser, and numerics is shipped with the system. There
are several websites that host Axiom source code.

Axiom is written using Literate Programming[Knut92] so each file is actually a document
rather than just machine source code. The goal is to make the whole system completely
literate so people can actually read the system and understand it. This is the first volume
in a series of books that will attempt to reach that goal.

The primary site is the Axiom website (http://axiom-developer.org).

Axiom is hosted on Github (http://github.com/daly/axiom)

Axiom is hosted at the Free Software Foundation site which is
(http://savannah.nongnu.org/projects/axiom).

Axiom is hosted at the Sourceforge site which is
(http://sourceforge.net/projects/axiom).
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Chapter 2

Ten Fundamental Ideas

Axiom has both an interactive language for user interactions and a programming language
for building library modules. Like Modula 2, PASCAL, FORTRAN, and Ada, the program-
ming language emphasizes strict type-checking. Unlike these languages, types in Axiom are
dynamic objects: they are created at run-time in response to user commands.

Here is the idea of the Axiom programming language in a nutshell. Axiom types range
from algebraic ones (like polynomials, matrices, and power series) to data structures (like
lists, dictionaries, and input files). Types combine in any meaningful way. You can build
polynomials of matrices, matrices of polynomials of power series, hash tables with symbolic
keys and rational function entries, and so on.

Categories define algebraic properties to ensure mathematical correctness. They ensure, for
example, that matrices of polynomials are OK, but matrices of input files are not. Through
categories, programs can discover that polynomials of continued fractions have a commuta-
tive multiplication whereas polynomials of matrices do not.

Categories allow algorithms to be defined in their most natural setting. For example, an
algorithm can be defined to solve polynomial equations over any field. Likewise a great-
est common divisor can compute the “gcd” of two elements from any Euclidean domain.
Categories foil attempts to compute meaningless “gcds”, for example, of two hashtables.
Categories also enable algorithms to be compiled into machine code that can be run with
arbitrary types.

The Axiom interactive language is oriented towards ease-of-use. The Axiom interpreter uses
type-inferencing to deduce the type of an object from user input. Type declarations can
generally be omitted for common types in the interactive language.

So much for the nutshell. Here are these basic ideas described by ten design principles:

2.0.12 Types are Defined by Abstract Datatype Programs

Basic types are called domains of computation, or, simply, domains. Domains are defined
by Axiom programs of the form:

Name(...): Exports == Implementation

Each domain has a capitalized Name that is used to refer to the class of its members. For ex-
ample, Integer denotes “the class of integers,” Float, “the class of floating point numbers,”

11
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and String, “the class of strings.”

The “...” part following Name lists zero or more parameters to the constructor. Some basic
ones like Integer take no parameters. Others, like Matrix, Polynomial and List, take
a single parameter that again must be a domain. For example, Matrix(Integer) denotes
“matrices over the integers,” Polynomial (Float) denotes “polynomial with floating point
coefficients,” and List (Matrix (Polynomial (Integer))) denotes “lists of matrices of
polynomials over the integers.” There is no restriction on the number or type of parameters
of a domain constructor.

SquareMatrix(2,Integer) is an example of a domain constructor that accepts both a particular
data value as well as an integer. In this case the number 2 specifies the number of rows and
columns the square matrix will contain. Elements of the matricies are integers.

The Exports part specifies operations for creating and manipulating objects of the domain.
For example, type Integer exports constants 0 and 1, and operations “+”, “-”, and “*”.
While these operations are common, others such as odd? and bit? are not. In addition
the Exports section can contain symbols that represent properties that can be tested. For
example, the Category EntireRing has the symbol noZeroDivisors which asserts that if a
product is zero then one of the factors must be zero.

The Implementation part defines functions that implement the exported operations of the
domain. These functions are frequently described in terms of another lower-level domain
used to represent the objects of the domain. Thus the operation of adding two vectors of
real numbers can be described and implemented using the addition operation from Float.

2.0.13 The Type of Basic Objects is a Domain or Subdomain

Every Axiom object belongs to a unique domain. The domain of an object is also called its
type. Thus the integer 7 has type Integer and the string "daniel" has type String.

The type of an object, however, is not unique. The type of integer 7 is not only Integer

but NonNegativeInteger, PositiveInteger, and possibly, in general, any other “subdo-
main” of the domain Integer. A subdomain is a domain with a “membership predicate”.
PositiveInteger is a subdomain of Integer with the predicate “is the integer > 0?”.

Subdomains with names are defined by abstract datatype programs similar to those for
domains. The Export part of a subdomain, however, must list a subset of the exports of
the domain. The Implementation part optionally gives special definitions for subdomain
objects.

2.0.14 Domains Have Types Called Categories

Domains and subdomains in Axiom are themselves objects that have types. The type of a
domain or subdomain is called a category. Categories are described by programs of the form:

Name(...): Category == Exports

The type of every category is the distinguished symbol Category. The category Name

is used to designate the class of domains of that type. For example, category Ring des-
ignates the class of all rings. Like domains, categories can take zero or more parame-
ters as indicated by the “...” part following Name. Two examples are Module(R) and
MatrixCategory(R,Row,Col).
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The Exports part defines a set of operations. For example, Ring exports the operations “0”,
“1”, “+”, “-”, and “*”. Many algebraic domains such as Integer and Polynomial (Float)

are rings. String and List (R) (for any domain R) are not.

Categories serve to ensure the type-correctness. The definition of matrices states Matrix(R:
Ring) requiring its single parameter R to be a ring. Thus a “matrix of polynomials” is
allowed, but “matrix of lists” is not.

Categories say nothing about representation. Domains, which are instances of category
types, specify representations.

2.0.15 Operations Can Refer To Abstract Types

All operations have prescribed source and target types. Types can be denoted by symbols
that stand for domains, called “symbolic domains.” The following lines of Axiom code use
a symbolic domain R:

R: Ring

power: (R, NonNegativeInteger): R -> R

power(x, n) == x ** n

Line 1 declares the symbol R to be a ring. Line 2 declares the type of power in terms of
R. From the definition on line 3, power(3, 2) produces 9 for x = 3 and R = Integer. Also,
power(3.0, 2) produces 9.0 for x = 3.0 and R = Float. power(”oxford”, 2) however fails
since ”oxford” has type String which is not a ring.

Using symbolic domains, algorithms can be defined in their most natural or general setting.

2.0.16 Categories Form Hierarchies

Categories form hierarchies (technically, directed-acyclic graphs). A simplified hierarchical
world of algebraic categories is shown below. At the top of this world is SetCategory, the
class of algebraic sets. The notions of parents, ancestors, and descendants is clear. Thus
ordered sets (domains of category OrderedSet) and rings are also algebraic sets. Likewise,
fields and integral domains are rings and algebraic sets. However fields and integral domains
are not ordered sets.

SetCategory +---- Ring ---- IntegralDomain ---- Field

|

+---- Finite ---+

| \

+---- OrderedSet -----+ OrderedFinite

Figure 1. A simplified category hierarchy.

2.0.17 Domains Belong to Categories by Assertion

A category designates a class of domains. Which domains? You might think that Ring

designates the class of all domains that export 0, 1, “+”, “-”, and “*”. But this is not so.
Each domain must assert which categories it belongs to.

The Export part of the definition for Integer reads, for example:

Join(OrderedSet, IntegralDomain, ...) with ...
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This definition asserts that Integer is both an ordered set and an integral domain. In fact,
Integer does not explicitly export constants 0 and 1 and operations “+”, “-” and “*” at all:
it inherits them all from Ring! Since IntegralDomain is a descendant of Ring, Integer is
therefore also a ring.

Assertions can be conditional. For example, Complex(R) defines its exports by:

Ring with ... if R has Field then Field ...

Thus Complex(Float) is a field but Complex(Integer) is not since Integer is not a field.

You may wonder: “Why not simply let the set of operations determine whether a domain
belongs to a given category?”. Axiom allows operation names (for example, norm) to have
very different meanings in different contexts. The meaning of an operation in Axiom is
determined by context. By associating operations with categories, operation names can be
reused whenever appropriate or convenient to do so. As a simple example, the operation <

might be used to denote lexicographic-comparison in an algorithm. However, it is wrong to
use the same < with this definition of absolute-value:

abs(x) == if x < 0 then− x else x

Such a definition for abs in Axiom is protected by context: argument x is required to be a
member of a domain of category OrderedSet.

2.0.18 Packages Are Clusters of Polymorphic Operations

In Axiom, facilities for symbolic integration, solution of equations, and the like are placed
in “packages”. A package is a special kind of domain: one whose exported operations
depend solely on the parameters of the constructor and/or explicit domains. Packages,
unlike Domains, do not specify the representation.

If you want to use Axiom, for example, to define some algorithms for solving equations of
polynomials over an arbitrary field F , you can do so with a package of the form:

MySolve(F: Field): Exports == Implementation

where Exports specifies the solve operations you wish to export from the domain and
the Implementation defines functions for implementing your algorithms. Once Axiom has
compiled your package, your algorithms can then be used for any F: floating-point numbers,
rational numbers, complex rational functions, and power series, to name a few.

2.0.19 The Interpreter Builds Domains Dynamically

The Axiom interpreter reads user input then builds whatever types it needs to perform the
indicated computations. For example, to create the matrix

M =

(
x2 + 1 0

0 x/2

)
using the command:

M = [ [x**2+1,0],[0,x / 2] ]::Matrix(POLY(FRAC(INT)))

M =

[
x2 + 1 0

0 x/2

]
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Type: Matrix Polynomial Fraction Integer

the interpreter first loads the modules Matrix, Polynomial, Fraction, and Integer from
the library, then builds the domain tower “matrices of polynomials of rational numbers (i.e.
fractions of integers)”.

You can watch the loading process by first typing

)set message autoload on

In addition to the named domains above many additional domains and categories are loaded.
Most systems are preloaded with such common types. For efficiency reasons the most com-
mon domains are preloaded but most (there are more than 1100 domains, categories, and
packages) are not. Once these domains are loaded they are immediately available to the
interpreter.

Once a domain tower is built, it contains all the operations specific to the type. Computation
proceeds by calling operations that exist in the tower. For example, suppose that the user
asks to square the above matrix. To do this, the function “*” from Matrix is passed the
matrix M to compute M ∗M . The function is also passed an environment containing R that,
in this case, is Polynomial (Fraction (Integer)). This results in the successive calling of
the “*” operations from Polynomial, then from Fraction, and then finally from Integer.

Categories play a policing role in the building of domains. Because the argument of Matrix
is required to be a Ring, Axiom will not build nonsensical types such as “matrices of input
files”.

2.0.20 Axiom Code is Compiled

Axiom programs are statically compiled to machine code, then placed into library modules.
Categories provide an important role in obtaining efficient object code by enabling:

• static type-checking at compile time;

• fast linkage to operations in domain-valued parameters;

• optimization techniques to be used for partially specified types (operations for “vectors
of R”, for instance, can be open-coded even though R is unknown).

2.0.21 Axiom is Extensible

Users and system implementers alike use the Axiom language to add facilities to the Axiom
library. The entire Axiom library is in fact written in the Axiom source code and available
for user modification and/or extension.

Axiom’s use of abstract datatypes clearly separates the exports of a domain (what operations
are defined) from its implementation (how the objects are represented and operations are
defined). Users of a domain can thus only create and manipulate objects through these
exported operations. This allows implementers to “remove and replace” parts of the library
safely by newly upgraded (and, we hope, correct) implementations without consequence to
its users.

Categories protect names by context, making the same names available for use in other
contexts. Categories also provide for code-economy. Algorithms can be parameterized cat-
egorically to characterize their correct and most general context. Once compiled, the same
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machine code is applicable in all such contexts.

Finally, Axiom provides an automatic, guaranteed interaction between new and old code.
For example:

• if you write a new algorithm that requires a parameter to be a field, then your algorithm
will work automatically with every field defined in the system; past, present, or future.

• if you introduce a new domain constructor that produces a field, then the objects of
that domain can be used as parameters to any algorithm using field objects defined in
the system; past, present, or future.

Before embarking on the tour, we need to brief those readers working interactively with
Axiom on some details.



Chapter 3

Starting Axiom

Welcome to the Axiom environment for interactive computation and problem solving. Con-
sider this chapter a brief, whirlwind tour of the Axiom world. We introduce you to Axiom’s
graphics and the Axiom language. Then we give a sampling of the large variety of facili-
ties in the Axiom system, ranging from the various kinds of numbers, to data types (like
lists, arrays, and sets) and mathematical objects (like matrices, integrals, and differential
equations). We include a discussion of system commands and an interactive “undo.”

3.1 Starting Up and Winding Down

You need to know how to start the Axiom system and how to stop it. We assume that
Axiom has been correctly installed on your machine.

To begin using Axiom, issue the command axiom to the operating system shell. There is a
brief pause, some start-up messages, and then one or more windows appear.

If you are not running Axiom under the X Window System, there is only one window (the
console). At the lower left of the screen there is a prompt that looks like

(1) ->

When you want to enter input to Axiom, you do so on the same line after the prompt.
The “1” in “(1)”, also called the equation number, is the computation step number and is
incremented after you enter Axiom statements. Note, however, that a system command such
as )clear all may change the step number in other ways. We talk about step numbers
more when we discuss system commands and the workspace history facility.

If you are running Axiom under the X Window System, there may be two windows: the
console window (as just described) and the HyperDoc main menu. HyperDoc is a multiple-
window hypertext system that lets you view Axiom documentation and examples on-line,
execute Axiom expressions, and generate graphics. If you are in a graphical windowing
environment, it is usually started automatically when Axiom begins. If it is not running,
issue )hd to start it.

To interrupt an Axiom computation, hold down the Ctrl (control) key and press c. This
brings you back to the Axiom prompt.

17
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To exit from Axiom, move to the console window, type )quit at the input
prompt and press the Enter key. You will probably be prompted with the
following message:

Please enter y or yes if you really want to leave the
interactive environment and return to the operating system

You should respond yes, for example, to exit Axiom.

We are purposely vague in describing exactly what your screen looks like or what messages
Axiom displays. Axiom runs on a number of different machines, operating systems and
window environments, and these differences all affect the physical look of the system. You
can also change the way that Axiom behaves via system commands described later in this
chapter and in the Axiom System Commands. (Chapter 8 on page 173) System commands
are special commands, like )set, that begin with a closing parenthesis and are used to change
your environment. For example, you can set a system variable so that you are not prompted
for confirmation when you want to leave Axiom.

3.1.1 Clef

If you are using Axiom under the X Window System, the Clef command line editor is
probably available and installed. With this editor you can recall previous lines with the up
and down arrow keys. To move forward and backward on a line, use the right and left arrows.
You can use the Insert key to toggle insert mode on or off. When you are in insert mode,
the cursor appears as a large block and if you type anything, the characters are inserted into
the line without deleting the previous ones.

If you press the Home key, the cursor moves to the beginning of the line and if you press
the End key, the cursor moves to the end of the line. Pressing Ctrl-End deletes all the text
from the cursor to the end of the line.

Clef also provides Axiom operation name completion for a limited set of operations. If you
enter a few letters and then press the Tab key, Clef tries to use those letters as the prefix of
an Axiom operation name. If a name appears and it is not what you want, press Tab again
to see another name.

3.1.2 Typographic Conventions

In this document we have followed these typographical conventions:

• Categories, domains and packages are displayed in this font: Ring, Integer, DiophantineSolutionPackage.

• Prefix operators, infix operators, and punctuation symbols in the Axiom language are
displayed in the text like this: +, $, +->.

• Axiom expressions or expression fragments are displayed in this font:
inc(x) == x + 1.

• For clarity of presentation, TEX is often used to format expressions
g(x) = x2 + 1.

• Function names and HyperDoc button names are displayed in the text in this font:
factor, integrate, Lighting.

• Italics are used for emphasis and for words defined in the glossary:
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category.

This document contains over many examples of Axiom input and output. All examples were
run though Axiom and their output was created in TEX form. We have deleted system
messages from the example output if those messages are not important for the discussions
in which the examples appear.

3.2 The Axiom Language

The Axiom language is a rich language for performing interactive computations and for
building components of the Axiom library. Here we present only some basic aspects of
the language that you need to know for the rest of this chapter. Our discussion here is
intentionally informal, with details unveiled on an “as needed” basis. For more information
on a particular construct, we suggest you consult the index.

3.2.1 Arithmetic Expressions

For arithmetic expressions, use the “+” and “-” operator as in mathematics. Use “*” for
multiplication, and “**” for exponentiation. To create a fraction, use “/”. When an expres-
sion contains several operators, those of highest precedence are evaluated first. For arithmetic
operators, “**” has highest precedence, “*” and “/” have the next highest precedence, and
“+” and “-” have the lowest precedence.

Axiom puts implicit parentheses around operations of higher precedence, and groups those
of equal precedence from left to right.

1 + 2 - 3 / 4 * 3 ** 2 - 1

−19

4

Type: Fraction Integer

The above expression is equivalent to this.

((1 + 2) - ((3 / 4) * (3 ** 2))) - 1

−19

4

Type: Fraction Integer

If an expression contains subexpressions enclosed in parentheses, the parenthesized subex-
pressions are evaluated first (from left to right, from inside out).

1 + 2 - 3/ (4 * 3 ** (2 - 1))

11

4

Type: Fraction Integer

3.2.2 Previous Results

Use the percent sign “%” to refer to the last result. Also, use “%%’ to refer to previous
results. “%%(-1)” is equivalent to “%”, “%%(-2)” returns the next to the last result, and so
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on. “%%(1)” returns the result from step number 1, “%%(2)” returns the result from step
number 2, and so on. “%%(0)” is not defined.

This is ten to the tenth power.

10 ** 10

10000000000

Type: PositiveInteger

This is the last result minus one.

% - 1

9999999999

Type: PositiveInteger

This is the last result.

%%(-1)

9999999999

Type: PositiveInteger

This is the result from step number 1.

%%(1)

10000000000

Type: PositiveInteger

3.2.3 Some Types

Everything in Axiom has a type. The type determines what operations you can perform on
an object and how the object can be used.

Positive integers are given type PositiveInteger.

8

8

Type: PositiveInteger

Negative ones are given type Integer. This fine distinction is helpful to the Axiom inter-
preter.

-8

−8

Type: Integer

Here a positive integer exponent gives a polynomial result.

x**8

x8
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Type: Polynomial Integer

Here a negative integer exponent produces a fraction.

x**(-8)

1

x8

Type: Fraction Polynomial Integer

3.2.4 Symbols, Variables, Assignments, and Declarations

A symbol is a literal used for the input of things like the “variables” in polynomials and
power series.

We use the three symbols x, y, and z in entering this polynomial.

(x - y*z)**2

y2 z2 − 2 x y z + x2

Type: Polynomial Integer

A symbol has a name beginning with an uppercase or lowercase alphabetic character, “%”,
or “!”. Successive characters (if any) can be any of the above, digits, or “?”. Case is
distinguished: the symbol points is different from the symbol Points.

A symbol can also be used in Axiom as a variable. A variable refers to a value. To assign a
value to a variable, the operator “:=” is used. Axiom actually has two forms of assignment:
immediate assignment, as discussed here, and delayed assignment. A variable initially has
no restrictions on the kinds of values to which it can refer.

This assignment gives the value 4 (an integer) to a variable named x.

x := 4

4

Type: PositiveInteger

This gives the value z + 3/5 (a polynomial) to x.

x := z + 3/5

z +
3

5

Type: Polynomial Fraction Integer

To restrict the types of objects that can be assigned to a variable, use a declaration

y : Integer

Type: Void

After a variable is declared to be of some type, only values of that type can be assigned to
that variable.

y := 89

89
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Type: Integer

The declaration for y forces values assigned to y to be converted to integer values.

y := sin %pi

0

Type: Integer

If no such conversion is possible, Axiom refuses to assign a value to y.

y := 2/3

Cannot convert right-hand side of assignment

2

-

3

to an object of the type Integer of the left-hand side.

A type declaration can also be given together with an assignment. The declaration can assist
Axiom in choosing the correct operations to apply.

f : Float := 2/3

0.6666666666 6666666667

Type: Float

Any number of expressions can be given on input line. Just separate them by semicolons.
Only the result of evaluating the last expression is displayed.

These two expressions have the same effect as the previous single expression.

f : Float; f := 2/3

0.6666666666 6666666667

Type: Float

The type of a symbol is either Symbol or Variable(name) where name is the name of the
symbol.

By default, the interpreter gives this symbol the type Variable(q).

q

q

Type: Variable q

When multiple symbols are involved, Symbol is used.

[q, r]

[q, r]

Type: List OrderedVariableList [q,r]

What happens when you try to use a symbol that is the name of a variable?

f
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0.6666666666 6666666667

Type: Float

Use a single quote “’” before the name to get the symbol.

’f

f

Type: Variable f

Quoting a name creates a symbol by preventing evaluation of the name as a variable. Expe-
rience will teach you when you are most likely going to need to use a quote. We try to point
out the location of such trouble spots.

3.2.5 Conversion

Objects of one type can usually be “converted” to objects of several other types. To convert
an object to a new type, use the “::” infix operator. For example, to display an object, it
is necessary to convert the object to type OutputForm.

This produces a polynomial with rational number coefficients.

p := r**2 + 2/3

r2 +
2

3

Type: Polynomial Fraction Integer

Create a quotient of polynomials with integer coefficients by using “::”.

p :: Fraction Polynomial Integer

3 r2 + 2

3

Type: Fraction Polynomial Integer

Some conversions can be performed automatically when Axiom tries to evaluate your input.
Others conversions must be explicitly requested.

3.2.6 Calling Functions

As we saw earlier, when you want to add or subtract two values, you place the arithmetic
operator “+” or “-” between the two arguments denoting the values. To use most other
Axiom operations, however, you use another syntax: write the name of the operation first,
then an open parenthesis, then each of the arguments separated by commas, and, finally, a
closing parenthesis. If the operation takes only one argument and the argument is a number
or a symbol, you can omit the parentheses.

This calls the operation factor with the single integer argument 120.

factor(120)

23 3 5
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Type: Factored Integer

This is a call to divide with the two integer arguments 125 and 7.

divide(125,7)

[quotient = 17, remainder = 6]

Type: Record(quotient: Integer, remainder: Integer)

This calls quatern with four floating-point arguments.

quatern(3.4,5.6,2.9,0.1)

3.4 + 5.6 i+ 2.9 j + 0.1 k

Type: Quaternion Float

This is the same as factorial(10).

factorial 10

3628800

Type: PositiveInteger

An operations that returns a Boolean value (that is, true or false) frequently has a name
suffixed with a question mark (“?”). For example, the even? operation returns true if its
integer argument is an even number, false otherwise.

An operation that can be destructive on one or more arguments usually has a name ending
in a exclamation point (“!”). This actually means that it is allowed to update its arguments
but it is not required to do so. For example, the underlying representation of a collection type
may not allow the very last element to removed and so an empty object may be returned
instead. Therefore, it is important that you use the object returned by the operation and not
rely on a physical change having occurred within the object. Usually, destructive operations
are provided for efficiency reasons.

3.2.7 Some Predefined Macros

Axiom provides several macros for your convenience. Macros are names (or forms) that
expand to larger expressions for commonly used values.

%i The square root of -1.
%e The base of the natural logarithm.
%pi π.
%infinity ∞.
%plusInfinity +∞.
%minusInfinity −∞.

To display all the macros (along with anything you have defined in the workspace), issue the
system command )display all.

3.2.8 Long Lines

When you enter Axiom expressions from your keyboard, there will be times when they are
too long to fit on one line. Axiom does not care how long your lines are, so you can let them
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continue from the right margin to the left side of the next line.

Alternatively, you may want to enter several shorter lines and have Axiom glue them together.
To get this glue, put an underscore ( ) at the end of each line you wish to continue.

2_

+_

3

is the same as if you had entered

2+3

Axiom statements in an input file can use indentation to indicate the program structure.

3.2.9 Comments

Comment statements begin with two consecutive hyphens or two consecutive plus signs and
continue until the end of the line.

The comment beginning with “--” is ignored by Axiom.

2 + 3 -- this is rather simple, no?

5

Type: PositiveInteger

There is no way to write long multi-line comments other than starting each line with “--”
or “++”.

3.3 Using Axiom as a Pocket Calculator

At the simplest level Axiom can be used as a pocket calculator where expressions involving
numbers and operators are entered directly in infix notation. In this sense the more advanced
features of the calculator can be regarded as operators (e.g sin, cos, etc).

3.3.1 Basic Arithmetic

An example of this might be to calculate the cosine of 2.45 (in radians). To do this one
would type:

(1)-> cos 2.45

−0.7702312540473073417

Type: Float

Before proceeding any further it would be best to explain the previous three lines. Axiom
presents a “(1) -> ” prompt (shown here but omitted elsewhere) when interacting with the
user. The full prompt has other text preceding this but it is not relevant here. The number
in parenthesis is the step number of the input which may be used to refer to the results of
previous calculations. The step number appears at the start of the second line to tell you
which step the result belongs to. Since the interpreter probably loaded numerous libraries
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to calculate the result given above and listed each one in the prcess, there could easily be
several pages of text between your input and the answer.

The last line contains the type of the result. The type Float is used to represent real
numbers of arbitrary size and precision (where the user is able to define how big arbitrary
is – the default is 20 digits but can be as large as your computer system can handle). The
type of the result can help track down mistakes in your input if you don’t get the answer
you expected.

Other arithmetic operations such as addition, subtraction, and multiplication behave as
expected:

6.93 * 4.1328

28.640304

Type: Float

6.93 / 4.1328

1.6768292682926829268

Type: Float

but integer division isn’t quite so obvious. For example, if one types:

4/6

2

3

Type: Fraction Integer

a fractional result is obtained. The function used to display fractions attempts to produce
the most readable answer. In the example:

4/2

2

Type: Fraction Integer

the result is stored as the fraction 2/1 but is displayed as the integer 2. This fraction
could be converted to type Integer with no loss of information but Axiom will not do so
automatically.

3.3.2 Type Conversion

To obtain the floating point value of a fraction one must convert ( conversions are applied
by the user and coercions are applied automatically by the interpreter) the result to type
Float using the “::” operator as follows:

(4.6)::Float

4.6

Type: Float
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Although Axiom can convert this back to a fraction it might not be the same fraction you
started with due to rounding errors. For example, the following conversion appears to be
without error but others might not:

%::Fraction Integer

23

5

Type: Fraction Integer

where “%” represents the previous result (not the calculation).

Although Axiom has the ability to work with floating-point numbers to a very high precision
it must be remembered that calculations with these numbers are not exact. Since Axiom is
a computer algebra package and not a numerical solutions package this should not create too
many problems. The idea is that the user should use Axiom to do all the necessary symbolic
manipulation and only at the end should actual numerical results be extracted.

If you bear in mind that Axiom appears to store expressions just as you have typed them
and does not perform any evalutation of them unless forced to then programming in the
system will be much easier. It means that anything you ask Axiom to do (within reason)
will be carried out with complete accuracy.

In the previous examples the “::” operator was used to convert values from one type to
another. This type conversion is not possible for all values. For instance, it is not possible
to convert the number 3.4 to an integer type since it can’t be represented as an integer. The
number 4.0 can be converted to an integer type since it has no fractional part.

Conversion from floating point values to integers is performed using the functions round
and truncate. The first of these rounds a floating point number to the nearest integer while
the other truncates (i.e. removes the fractional part). Both functions return the result as
a floating point number. To extract the fractional part of a floating point number use
the function fractionPart but note that the sign of the result depends on the sign of the
argument. Axiom obtains the fractional part of x using x− truncate(x):

round(3.77623)

4.0

Type: Float

round(-3.77623)

−4.0

Type: Float

truncate(9.235)

9.0

Type: Float

truncate(-9.654)

−9.0

Type: Float
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fractionPart(-3.77623)

−0.77623

Type: Float

3.3.3 Useful Functions

To obtain the absolute value of a number the abs function can be used. This takes a single
argument which is usually an integer or a floating point value but doesn’t necessarily have
to be. The sign of a value can be obtained via the sign function which returns −1, 0, or 1
depending on the sign of the argument.

abs(4)

4

Type: PositiveInteger

abs(-3)

3

Type: PositiveInteger

abs(-34254.12314)

34254.12314

Type: Float

sign(-49543.2345346)

−1

Type: Integer

sign(0)

0

Type: NonNegativeInteger

sign(234235.42354)

1

Type: PositiveInteger

Tests on values can be done using various functions which are generally more efficient than
using relational operators such as = particularly if the value is a matrix. Examples of some
of these functions are:

positive?(-234)

false

Type: Boolean
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negative?(-234)

true

Type: Boolean

zero?(42)

false

Type: Boolean

one?(1)

true

Type: Boolean

odd?(23)

true

Type: Boolean

odd?(9.435)

false

Type: Boolean

even?(-42)

true

Type: Boolean

prime?(37)

true

Type: Boolean

prime?(-37)

false

Type: Boolean

Some other functions that are quite useful for manipulating numerical values are:

sin(x) Sine of x

cos(x) Cosine of x

tan(x) Tangent of x

asin(x) Arcsin of x

acos(x) Arccos of x

atan(x) Arctangent of x

gcd(x,y) Greatest common divisor of x and y

lcm(x,y) Lowest common multiple of x and y

max(x,y) Maximum of x and y

min(x,y) Minimum of x and y
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factorial(x) Factorial of x

factor(x) Prime factors of x

divide(x,y) Quotient and remainder of x/y

Some simple infix and prefix operators:

+ Addition - Subtraction

- Numerical Negation ~ Logical Negation

/\ Conjunction (AND) \/ Disjunction (OR)

and Logical AND (/\) or Logical OR (\/)

not Logical Negation ** Exponentiation

* Multiplication / Division

quo Quotient rem Remainder

< less than > greater than

<= less than or equal >= greater than or equal

Some useful Axiom macros:

%i The square root of -1

%e The base of the natural logarithm

%pi Pi

%infinity Infinity

%plusInfinity Positive Infinity

%minusInfinity Negative Infinity

3.4 Using Axiom as a Symbolic Calculator

In the previous section all the examples involved numbers and simple functions. Also none of
the expressions entered were assigned to anything. In this section we will move on to simple
algebra (i.e. expressions involving symbols and other features available on more sophisticated
calculators).

3.4.1 Expressions Involving Symbols

Expressions involving symbols are entered just as they are written down, for example:

xSquared := x**2

x2

Type: Polynomial Integer

where the assignment operator “:=” represents immediate assignment. Later it will be seen
that this form of assignment is not always desirable and the use of the delayed assignment
operator “==” will be introduced. The type of the result is Polynomial Integer which is
used to represent polynomials with integer coefficients. Some other examples along similar
lines are:

xDummy := 3.21*x**2

3.21 x2

Type: Polynomial Float

xDummy := x**2.5
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x2
√
x

Type: Expression Float

xDummy := x**3.3

x3 10
√
x
3

Type: Expression Float

xyDummy := x**2 - y**2

−y2 + x2

Type: Polynomial Integer

Given that we can define expressions involving symbols, how do we actually compute the
result when the symbols are assigned values? The answer is to use the eval function which
takes an expression as its first argument followed by a list of assignments. For example, to
evaluate the expressions xDummy and xyDummy resulting from their respective assignments
above we type:

eval(xDummy,x=3)

37.540507598529552193

Type: Expression Float

eval(xyDummy, [x=3, y=2.1])

4.59

Type: Polynomial Float

3.4.2 Complex Numbers

For many scientific calculations real numbers aren’t sufficient and support for complex num-
bers is also required. Complex numbers are handled in an intuitive manner. Axiom uses the
%i macro to represent the square root of −1. Thus expressions involving complex numbers
are entered just like other expressions.

(2/3 + %i)**3

−46

27
+

1

3
%i

Type: Complex Fraction Integer

The real and imaginary parts of a complex number can be extracted using the real and
imag functions and the complex conjugate of a number can be obtained using conjugate:

real(3 + 2*%i)

3

Type: PositiveInteger

imag(3+ 2*%i)
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2

Type: PositiveInteger

conjugate(3 + 2*%i)

3− 2%i

Type: Complex Integer

The function factor can also be applied to complex numbers but the results aren’t quite so
obvious as for factoring integer:

144 + 24*%i

144 + 24%i

Type: Complex Integer

factor(%)

%i(1 + %i)6 3(6 + %i)

Type: Factored Complex Integer

We can see that this multiplies out to the original value by expanding the factored expression:

expand %

144 + 24%i

Type: Complex Integer

3.4.3 Number Representations

By default all numerical results are displayed in decimal with real numbers shown to 20
significant figures. If the integer part of a number is longer than 20 digits then nothing after
the decimal point is shown and the integer part is given in full. To alter the number of digits
shown the function digits can be called. The result returned by this function is the previous
setting. For example, to find the value of π to 40 digits we type:

digits(40)

20

Type: PositiveInteger

%pi::Float

3.1415926535 8979323846 2643383279 502884197

Type: Float

As can be seen in the example above, there is a gap after every ten digits. This can be
changed using the outputSpacing function where the argument is the number of digits
to be displayed before a space is inserted. If no spaces are desired then use the value
0. Two other functions controlling the appearance of real numbers are outputFloating
and outputFixed. The former causes Axiom to display floating-point values in exponent
notation and the latter causes it to use fixed-point notation. For example:
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outputFloating(); %

0.3141592653589793238462643383279502884197 E 1

Type: Float

outputFloating(3); 0.00345

0.345 E − 2

Type: Float

outputFixed(); %

0.00345

Type: Float

outputFixed(3); %

0.003

Type: Float

outputGeneral(); %

0.00345

Type: Float

Note that the semicolon “;” in the examples above allows several expressions to be entered
on one line. The result of the last expression is displayed. Remember also that the percent
symbol “%” is used to represent the result of a previous calculation.

To display rational numbers in a base other than 10 the function radix is used. The first
argument of this function is the expression to be displayed and the second is the base to be
used.

radix(10**10,32)

9A0NP00

Type: RadixExpansion 32

radix(3/21,5)

0.032412

Type: RadixExpansion 5

Rational numbers can be represented as a repeated decimal expansion using the decimal
function or as a continued fraction using continuedFraction. Any attempt to call these
functions with irrational values will fail.

decimal(22/7)

3.142857

Type: DecimalExpansion
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continuedFraction(6543/210)

31 +
1|
|6

+
1|
|2

+
1|
|1

+
1|
|3

Type: ContinuedFraction Integer

Finally, partial fractions in compact and expanded form are available via the functions
partialFraction and padicFraction respectively. The former takes two arguments, the
first being the numerator of the fraction and the second being the denominator. The latter
function takes a fraction and expands it further while the function compactFraction does
the reverse:

partialFraction(234,40)

6− 3

22
+

3

5

Type: PartialFraction Integer

padicFraction(%)

6− 1

2
− 1

22
+

3

5

Type: PartialFraction Integer

compactFraction(%)

6− 3

22
+

3

5

Type: PartialFraction Integer

padicFraction(234/40)

117

20

Type: PartialFraction Fraction Integer

To extract parts of a partial fraction the function nthFractionalTerm is available and
returns a partial fraction of one term. To decompose this further the numerator can be
obtained using firstNumer and the denominator with firstDenom. The whole part of a
partial fraction can be retrieved using wholePart and the number of fractional parts can
be found using the function numberOfFractionalTerms:

t := partialFraction(234,40)

6− 3

22
+

3

5

Type: PartialFraction Integer

wholePart(t)

6

Type: PositiveInteger

numberOfFractionalTerms(t)
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2

Type: PositiveInteger

p := nthFractionalTerm(t,1)

− 3

22

Type: PartialFraction Integer

firstNumer(p)

−3

Type: Integer

firstDenom(p)

22

Type: Factored Integer

3.4.4 Modular Arithmetic

By using the type constructor PrimeField it is possible to do arithmetic modulo some prime
number. For example, arithmetic module 7 can be performed as follows:

x : PrimeField 7 := 5

5

Type: PrimeField 7

x**5 + 6

2

Type: PrimeField 7

1/x

3

Type: PrimeField 7

The first example should be read as:

Let x be of type PrimeField(7) and assign to it the value 5

Note that it is only possible to invert non-zero values if the arithmetic is performed modulo
a prime number. Thus arithmetic modulo a non-prime integer is possible but the reciprocal
operation is undefined and will generate an error. Attempting to use the PrimeField type
constructor with a non-prime argument will generate an error. An example of non-prime
modulo arithmetic is:

y : IntegerMod 8 := 11

3
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Type: IntegerMod 8

y*4 + 27

7

Type: IntegerMod 8

Note that polynomials can be constructed in a similar way:

(3*a**4 + 27*a - 36)::Polynomial PrimeField 7

3 a4 + 6 a+ 6

Type: Polynomial PrimeField 7

3.5 General Points about Axiom

3.5.1 Computation Without Output

It is sometimes desirable to enter an expression and prevent Axiom from displaying the result.
To do this the expression should be terminated with a semicolon “;”. In a previous section
it was mentioned that a set of expressions separated by semicolons would be evaluated and
the result of the last one displayed. Thus if a single expression is followed by a semicolon no
output will be produced (except for its type):

2 + 4*5;

Type: PositiveInteger

3.5.2 Accessing Earlier Results

The “%” macro represents the result of the previous computation. The “%%” macro is
available which takes a single integer argument. If the argument is positive then it refers to
the step number of the calculation where the numbering begins from one and can be seen
at the end of each prompt (the number in parentheses). If the argument is negative then it
refers to previous results counting backwards from the last result. That is, “%%(-1)” is the
same as “%”. The value of “%%(0)” is not defined and will generate an error if requested.

3.5.3 Splitting Expressions Over Several Lines

Although Axiom will quite happily accept expressions that are longer than the width of the
screen (just keep typing without pressing the Return key) it is often preferable to split the
expression being entered at a point where it would result in more readable input. To do
this the underscore “ ” symbol is placed before the break point and then the Return key
is pressed. The rest of the expression is typed on the next line, can be preceeded by any
number of whitespace chars, for example:

2_

+_

3
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5

Type: PositiveInteger

The underscore symbol is an escape character and its presence alters the meaning of the
characters that follow it. As mentions above whitespace following an underscore is ignored
(the Return key generates a whitespace character). Any other character following an un-
derscore loses whatever special meaning it may have had. Thus one can create the identifier
“a+b” by typing “a +b” although this might lead to confusions. Also note the result of the
following example:

ThisIsAVeryLong

VariableName

ThisIsAV eryLongV ariableName

Type: Variable ThisIsAVeryLongVariableName

3.5.4 Comments and Descriptions

Comments and descriptions are really only of use in files of Axiom code but can be used
when the output of an interactive session is being spooled to a file (via the system command
)spool). A comment begins with two dashes “- -” and continues until the end of the line.
Multi-line comments are only possible if each individual line begins with two dashes.

Descriptions are the same as comments except that the Axiom compiler will include them
in the object files produced and make them available to the end user for documentation
purposes.

A description is placed before a calculation begins with three “+” signs (i.e. “+++”) and a
description placed after a calculation begins with two plus symbols (i.e.“++”). The so-called
“plus plus” comments are used within the algebra files and are processed by the compiler to
add to the documentation. The so-called “minus minus” comments are ignored everywhere.

3.5.5 Control of Result Types

In earlier sections the type of an expression was converted to another via the “::” operator.
However, this is not the only method for converting between types and two other operators
need to be introduced and explained.

The first operator is “$” and is used to specify the package to be used to calculate the result.
Thus:

(2/3)$Float

0.6666666666 6666666667

Type: Float

tells Axiom to use the “/” operator from the Float package to evaluate the expression 2/3.
This does not necessarily mean that the result will be of the same type as the domain from
which the operator was taken. In the following example the sign operator is taken from the
Float package but the result is of type Integer.

sign(2.3)$Float
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1

Type: Integer

The other operator is “@” which is used to tell Axiom what the desired type of the result
of the calculation is. In most situations all three operators yield the same results but the
example below should help distinguish them.

(2 + 3)::String

"5"

Type: String

(2 + 3)@String

An expression involving @ String actually evaluated to one of

type PositiveInteger . Perhaps you should use :: String .

(2 + 3)$String

The function + is not implemented in String .

If an expression X is converted using one of the three operators to type T the interpretations
are:

:: means explicitly convert X to type T if possible.

$ means use the available operators for type T to compute X.

@ means choose operators to compute X so that the result is of type T.

3.5.6 Using system commands

We conclude our tour of Axiom with a brief discussion of system commands. System com-
mands are special statements that start with a closing parenthesis ()). They are used to
control or display your Axiom environment, start the HyperDoc system, issue operating sys-
tem commands and leave Axiom. For example, )system is used to issue commands to the
operating system from Axiom. Here is a brief description of some of these commands.

Perhaps the most important user command is the )clear all command that initializes your
environment. Every section and subsection in this document has an invisible )clear all

that is read prior to the examples given in the section. )clear all gives you a fresh, empty
environment with no user variables defined and the step number reset to 1. The )clear

command can also be used to selectively clear values and properties of system variables.

Another useful system command is )read. A preferred way to develop an application in
Axiom is to put your interactive commands into a file, say my.input file. To get Axiom to
read this file, you use the system command )read my.input. If you need to make changes
to your approach or definitions, go into your favorite editor, change my.input, then )read

my.input again.

Other system commands include: )history, to display previous input and/or output lines;
)display, to display properties and values of workspace variables; and )what.

Issue )what to get a list of Axiom objects that contain a given substring in their name.

)what operations integrate
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Operations whose names satisfy the above pattern(s):

HermiteIntegrate algintegrate complexIntegrate

expintegrate extendedIntegrate fintegrate

infieldIntegrate integrate internalIntegrate

internalIntegrate0 lazyGintegrate lazyIntegrate

lfintegrate limitedIntegrate monomialIntegrate

nagPolygonIntegrate palgintegrate pmComplexintegrate

pmintegrate primintegrate tanintegrate

To get more information about an operation such as

limitedIntegrate , issue the command )display op limitedIntegrate

3.5.7 Using undo

A useful system command is )undo. Sometimes while computing interactively with Axiom,
you make a mistake and enter an incorrect definition or assignment. Or perhaps you need to
try one of several alternative approaches, one after another, to find the best way to approach
an application. For this, you will find the undo facility of Axiom helpful.

System command )undo n means “undo back to step n”; it restores the values of user
variables to those that existed immediately after input expression n was evaluated. Similarly,
)undo -n undoes changes caused by the last n input expressions. Once you have done an
)undo, you can continue on from there, or make a change and redo all your input expressions
from the point of the )undo forward. The )undo is completely general: it changes the
environment like any user expression. Thus you can )undo any previous undo.

Here is a sample dialogue between user and Axiom.

“Let me define two mutually dependent functions f and g piece-wise.”

f(0) == 1; g(0) == 1

Type: Void

“Here is the general term for f .”

f(n) == e/2*f(n-1) - x*g(n-1)

Type: Void

“And here is the general term for g.”

g(n) == -x*f(n-1) + d/3*g(n-1)

Type: Void

“What is value of f(3)?”

f(3)

−x3 +

(
e+

1

3
d

)
x2 +

(
−1

4
e2 − 1

6
d e− 1

9
d2
)

x+
1

8
e3

Type: Polynomial Fraction Integer

“Hmm, I think I want to define f differently. Undo to the environment right after I defined
f .”
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)undo 2

“Here is how I think I want f to be defined instead.”

f(n) == d/3*f(n-1) - x*g(n-1)

1 old definition(s) deleted for function or rule f

Type: Void

Redo the computation from expression 3 forward.

)undo )redo

g(n) == -x*f(n-1) + d/3*g(n-1)

Type: Void

f(3)

Compiling function g with type Integer -> Polynomial Fraction

Integer

Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined

Compiling function g with type Integer -> Polynomial Fraction

Integer

Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined

Compiling function f with type Integer -> Polynomial Fraction

Integer

Compiling function f as a recurrence relation.

+++ |*1;f;1;G82322;AUX| redefined

+++ |*1;f;1;G82322| redefined

−x3 + d x2 − 1

3
d2 x+

1

27
d3

Type: Polynomial Fraction Integer

“I want my old definition of f after all. Undo the undo and restore the environment to that
immediately after (4).”

)undo 4

“Check that the value of f(3) is restored.”

f(3)

Compiling function g with type Integer -> Polynomial Fraction

Integer

Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined
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+++ |*1;g;1;G82322| redefined

Compiling function g with type Integer -> Polynomial Fraction

Integer

Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined

Compiling function f with type Integer -> Polynomial Fraction

Integer

Compiling function f as a recurrence relation.

+++ |*1;f;1;G82322;AUX| redefined

+++ |*1;f;1;G82322| redefined

−x3 +

(
e+

1

3
d

)
x2 +

(
−1

4
e2 − 1

6
d e− 1

9
d2
)

x+
1

8
e3

Type: Polynomial Fraction Integer

After you have gone off on several tangents, then backtracked to previous points in your
conversation using )undo, you might want to save all the “correct” input commands you
issued, disregarding those undone. The system command )history )write mynew.input

writes a clean straight-line program onto the file mynew.input on your disk.

3.6 Data Structures in Axiom

This chapter is an overview of some of the data structures provided by Axiom.

3.6.1 Lists

The Axiom List type constructor is used to create homogenous lists of finite size. The
notation for lists and the names of the functions that operate over them are similar to those
found in functional languages such as ML.

Lists can be created by placing a comma separated list of values inside square brackets or if
a list with just one element is desired then the function list is available:

[4]

[4]

Type: List PositiveInteger

list(4)

[4]

Type: List PositiveInteger

[1,2,3,5,7,11]
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[1, 2, 3, 5, 7, 11]

Type: List PositiveInteger

The function append takes two lists as arguments and returns the list consisting of the
second argument appended to the first. A single element can be added to the front of a list
using cons:

append([1,2,3,5],[7,11])

[1, 2, 3, 5, 7, 11]

Type: List PositiveInteger

cons(23,[65,42,19])

[23, 65, 42, 19]

Type: List PositiveInteger

Lists are accessed sequentially so if Axiom is asked for the value of the twentieth element in
the list it will move from the start of the list over nineteen elements before it reaches the
desired element. Each element of a list is stored as a node consisting of the value of the
element and a pointer to the rest of the list. As a result the two main operations on a list
are called first and rest. Both of these functions take a second optional argument which
specifies the length of the first part of the list:

first([1,5,6,2,3])

1

Type: PositiveInteger

first([1,5,6,2,3],2)

[1, 5]

Type: List PositiveInteger

rest([1,5,6,2,3])

[5, 6, 2, 3]

Type: List PositiveInteger

rest([1,5,6,2,3],2)

[6, 2, 3]

Type: List PositiveInteger

Other functions are empty? which tests to see if a list contains no elements, member?
which tests to see if the first argument is a member of the second, reverse which reverses
the order of the list, sort which sorts a list, and removeDuplicates which removes any
duplicates. The length of a list can be obtained using the “#” operator.

empty?([7,2,-1,2])

false
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Type: Boolean

member?(-1,[7,2,-1,2])

true

Type: Boolean

reverse([7,2,-1,2])

[2,−1, 2, 7]

Type: List Integer

sort([7,2,-1,2])

[−1, 2, 2, 7]

Type: List Integer

removeDuplicates([1,5,3,5,1,1,2])

[1, 5, 3, 2]

Type: List PositiveInteger

#[7,2,-1,2]

4

Type: PositiveInteger

Lists in Axiom are mutable and so their contents (the elements and the links) can be modified
in place. Functions that operate over lists in this way have names ending in the symbol “!”.
For example, concat! takes two lists as arguments and appends the second argument to
the first (except when the first argument is an empty list) and setrest! changes the link
emanating from the first argument to point to the second argument:

u := [9,2,4,7]

[9, 2, 4, 7]

Type: List PositiveInteger

concat!(u,[1,5,42]); u

[9, 2, 4, 7, 1, 5, 42]

Type: List PositiveInteger

endOfu := rest(u,4)

[1, 5, 42]

Type: List PositiveInteger

partOfu := rest(u,2)

[4, 7, 1, 5, 42]
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Type: List PositiveInteger

setrest!(endOfu,partOfu); u [
9, 2, 4, 7, 1

]
Type: List PositiveInteger

From this it can be seen that the lists returned by first and rest are pointers to the original
list and not a copy. Thus great care must be taken when dealing with lists in Axiom.

Although the nth element of the list l can be obtained by applying the first function to n−1
applications of rest to l, Axiom provides a more useful access method in the form of the “.”
operator:

u.3

4

Type: PositiveInteger

u.5

1

Type: PositiveInteger

u.6

4

Type: PositiveInteger

first rest rest u -- Same as u.3

4

Type: PositiveInteger

u.first

9

Type: PositiveInteger

u(3)

4

Type: PositiveInteger

The operation u.i is referred to as indexing into u or elting into u. The latter term comes
from the elt function which is used to extract elements (the first element of the list is at
index 1).

elt(u,4)

7

Type: PositiveInteger
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If a list has no cycles then any attempt to access an element beyond the end of the list will
generate an error. However, in the example above there was a cycle starting at the third
element so the access to the sixth element wrapped around to give the third element. Since
lists are mutable it is possible to modify elements directly:

u.3 := 42; u [
9, 2, 42, 7, 1

]
Type: List PositiveInteger

Other list operations are:

L := [9,3,4,7]; #L

4

Type: PositiveInteger

last(L)

7

Type: PositiveInteger

L.last

7

Type: PositiveInteger

L.(#L - 1)

4

Type: PositiveInteger

Note that using the “#” operator on a list with cycles causes Axiom to enter an infinite
loop.

Note that any operation on a list L that returns a list LL
′
will, in general, be such that any

changes to LL
′
will have the side-effect of altering L. For example:

m := rest(L,2)

[4, 7]

Type: List PositiveInteger

m.1 := 20; L

[9, 3, 20, 7]

Type: List PositiveInteger

n := L

[9, 3, 20, 7]

Type: List PositiveInteger

n.2 := 99; L
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[9, 99, 20, 7]

Type: List PositiveInteger

n

[9, 99, 20, 7]

Type: List PositiveInteger

Thus the only safe way of copying lists is to copy each element from one to another and not
use the assignment operator:

p := [i for i in n] -- Same as ‘p := copy(n)’

[9, 99, 20, 7]

Type: List PositiveInteger

p.2 := 5; p

[9, 5, 20, 7]

Type: List PositiveInteger

n

[9, 99, 20, 7]

Type: List PositiveInteger

In the previous example a new way of constructing lists was given. This is a powerful method
which gives the reader more information about the contents of the list than before and which
is extremely flexible. The example

[i for i in 1..10]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Type: List PositiveInteger

should be read as

“Using the expression i, generate each element of the list by iterating the symbol i over the
range of integers [1,10]”

To generate the list of the squares of the first ten elements we just use:

[i**2 for i in 1..10]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Type: List PositiveInteger

For more complex lists we can apply a condition to the elements that are to be placed into
the list to obtain a list of even numbers between 0 and 11:

[i for i in 1..10 | even?(i)]

[2, 4, 6, 8, 10]

Type: List PositiveInteger
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This example should be read as:

“Using the expression i, generate each element of the list by iterating the symbol i over the
range of integers [1,10] such that i is even”

The following achieves the same result:

[i for i in 2..10 by 2]

[2, 4, 6, 8, 10]

Type: List PositiveInteger

3.6.2 Segmented Lists

A segmented list is one in which some of the elements are ranges of values. The expand
function converts lists of this type into ordinary lists:

[1..10]

[1..10]

Type: List Segment PositiveInteger

[1..3,5,6,8..10]

[1..3, 5..5, 6..6, 8..10]

Type: List Segment PositiveInteger

expand(%)

[1, 2, 3, 5, 6, 8, 9, 10]

Type: List Integer

If the upper bound of a segment is omitted then a different type of segmented list is obtained
and expanding it will produce a stream (which will be considered in the next section):

[1..]

[1..]

Type: List UniversalSegment PositiveInteger

expand(%)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream Integer

3.6.3 Streams

Streams are infinite lists which have the ability to calculate the next element should it be
required. For example, a stream of positive integers and a list of prime numbers can be
generated by:

[i for i in 1..]
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[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream PositiveInteger

[i for i in 1.. | prime?(i)]

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .]

Type: Stream PositiveInteger

In each case the first few elements of the stream are calculated for display purposes but the
rest of the stream remains unevaluated. The value of items in a stream are only calculated
when they are needed which gives rise to their alternative name of “lazy lists”.

Another method of creating streams is to use the generate(f,a) function. This applies its
first argument repeatedly onto its second to produce the stream [a, f(a), f(f(a)), f(f(f(a))) . . .].
Given that the function nextPrime returns the lowest prime number greater than its argu-
ment we can generate a stream of primes as follows:

generate(nextPrime,2)$Stream Integer

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .]

Type: Stream Integer

As a longer example a stream of Fibonacci numbers will be computed. The Fibonacci
numbers start at 1 and each following number is the addition of the two numbers that
precede it so the Fibonacci sequence is:

1, 1, 2, 3, 5, 8, . . .

.

Since the generation of any Fibonacci number only relies on knowing the previous two num-
bers we can look at the series through a window of two elements. To create the series the
window is placed at the start over the values [1, 1] and their sum obtained. The window
is now shifted to the right by one position and the sum placed into the empty slot of the
window; the process is then repeated. To implement this we require a function that takes
a list of two elements (the current view of the window), adds them, and outputs the new
window. The result is the function [a, b] -> [b, a+ b]:

win : List Integer -> List Integer

Type: Void

win(x) == [x.2, x.1 + x.2]

Type: Void

win([1,1])

[1, 2]

Type: List Integer

win(%)

[2, 3]
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Type: List Integer

Thus it can be seen that by repeatedly applying win to the results of the previous invocation
each element of the series is obtained. Clearly win is an ideal function to construct streams
using the generate function:

fibs := [generate(win,[1,1])]

[[1, 1], [1, 2], [2, 3], [3, 5], [5, 8], [8, 13], [13, 21], [21, 34], [34, 55], [55, 89], . . .]

Type: Stream List Integer

This isn’t quite what is wanted – we need to extract the first element of each list and place
that in our series:

fibs := [i.1 for i in [generate(win,[1,1])] ]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .]

Type: Stream Integer

Obtaining the 200th Fibonacci number is trivial:

fibs.200

280571172992510140037611932413038677189525

Type: PositiveInteger

One other function of interest is complete which expands a finite stream derived from an
infinite one (and thus was still stored as an infinite stream) to form a finite stream.

3.6.4 Arrays, Vectors, Strings, and Bits

The simplest array data structure is the one-dimensional array which can be obtained by
applying the oneDimensionalArray function to a list:

oneDimensionalArray([7,2,5,4,1,9])

[7, 2, 5, 4, 1, 9]

Type: OneDimensionalArray PositiveInteger

One-dimensional arrays are homogenous (all elements must have the same type) and mutable
(elements can be changed) like lists but unlike lists they are constant in size and have uniform
access times (it is just as quick to read the last element of a one-dimensional array as it is
to read the first; this is not true for lists).

Since these arrays are mutable all the warnings that apply to lists apply to arrays. That is,
it is possible to modify an element in a copy of an array and change the original:

x := oneDimensionalArray([7,2,5,4,1,9])

[7, 2, 5, 4, 1, 9]

Type: OneDimensionalArray PositiveInteger

y := x

[7, 2, 5, 4, 1, 9]
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Type: OneDimensionalArray PositiveInteger

y.3 := 20 ; x

[7, 2, 20, 4, 1, 9]

Type: OneDimensionalArray PositiveInteger

Note that because these arrays are of fixed size the concat! function cannot be applied to
them without generating an error. If arrays of this type are required use the FlexibleArray
constructor.

One-dimensional arrays can be created using new which specifies the size of the array and
the initial value for each of the elements. Other operations that can be applied to one-
dimensional arrays are map! which applies a mapping onto each element, swap! which
swaps two elements and copyInto!(a,b,c) which copies the array b onto a starting at
position c.

a : ARRAY1 PositiveInteger := new(10,3)

[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

Type: OneDimensionalArray PositiveInteger

(note that ARRAY1 is an abbreviation for the type OneDimensionalArray.) Other types
based on one-dimensional arrays are Vector, String, and Bits.

map!(i +-> i+1,a); a

[4, 4, 4, 4, 4, 4, 4, 4, 4, 4]

Type: OneDimensionalArray PositiveInteger

b := oneDimensionalArray([2,3,4,5,6])

[2, 3, 4, 5, 6]

Type: OneDimensionalArray PositiveInteger

swap!(b,2,3); b

[2, 4, 3, 5, 6]

Type: OneDimensionalArray PositiveInteger

copyInto!(a,b,3)

[4, 4, 2, 4, 3, 5, 6, 4, 4, 4]

Type: OneDimensionalArray PositiveInteger

a

[4, 4, 2, 4, 3, 5, 6, 4, 4, 4]

Type: OneDimensionalArray PositiveInteger

vector([1/2,1/3,1/14]) [
1

2
,
1

3
,
1

14

]
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Type: Vector Fraction Integer

"Hello, World"

"Hello, World"

Type: String

bits(8,true)

"11111111"

Type: Bits

A vector is similar to a one-dimensional array except that if its components belong to a ring
then arithmetic operations are provided.

3.6.5 Flexible Arrays

Flexible arrays are designed to provide the efficiency of one-dimensional arrays while retain-
ing the flexibility of lists. They are implemented by allocating a fixed block of storage for
the array. If the array needs to be expanded then a larger block of storage is allocated and
the contents of the old block are copied into the new one.

There are several operations that can be applied to this type, most of which modify the array
in place. As a result these functions all have names ending in “!”. The physicalLength
returns the actual length of the array as stored in memory while the physicalLength!
allows this value to be changed by the user.

f : FARRAY INT := new(6,1)

[1, 1, 1, 1, 1, 1]

Type: FlexibleArray Integer

f.1:=4; f.2:=3 ; f.3:=8 ; f.5:=2 ; f

[4, 3, 8, 1, 2, 1]

Type: FlexibleArray Integer

insert!(42,f,3); f

[4, 3, 42, 8, 1, 2, 1]

Type: FlexibleArray Integer

insert!(28,f,8); f

[4, 3, 42, 8, 1, 2, 1, 28]

Type: FlexibleArray Integer

removeDuplicates!(f)

[4, 3, 42, 8, 1, 2, 28]

Type: FlexibleArray Integer
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delete!(f,5)

[4, 3, 42, 8, 2, 28]

Type: FlexibleArray Integer

g:=f(3..5)

[42, 8, 2]

Type: FlexibleArray Integer

g.2:=7; f

[4, 3, 42, 8, 2, 28]

Type: FlexibleArray Integer

insert!(g,f,1)

[42, 7, 2, 4, 3, 42, 8, 2, 28]

Type: FlexibleArray Integer

physicalLength(f)

10

Type: PositiveInteger

physicalLength!(f,20)

[42, 7, 2, 4, 3, 42, 8, 2, 28]

Type: FlexibleArray Integer

merge!(sort!(f),sort!(g))

[2, 2, 2, 3, 4, 7, 7, 8, 28, 42, 42, 42]

Type: FlexibleArray Integer

shrinkable(false)$FlexibleArray(Integer)

true

Type: Boolean

There are several things to point out concerning these examples. First, although flexible
arrays are mutable, making copies of these arrays creates separate entities. This can be seen
by the fact that the modification of element g.2 above did not alter f. Second, the merge!
function can take an extra argument before the two arrays are merged. The argument is a
comparison function and defaults to “<=” if omitted. Lastly, shrinkable tells the system
whether or not to let flexible arrays contract when elements are deleted from them. An
explicit package reference must be given as in the example above.
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3.7 Functions, Choices, and Loops

By now the reader should be able to construct simple one-line expressions involving variables
and different data structures. This section builds on this knowledge and shows how to use
iteration, make choices, and build functions in Axiom. At the moment it is assumed that the
reader has a rough idea of how types are specified and constructed so that they can follow
the examples given.

From this point on most examples will be taken from input files.

3.7.1 Reading Code from a File

Input files contain code that will be fed to the command prompt. The primary difference
between the command line and an input file is that indentation matters. In an input file you
can specify “piles” of code by using indentation.

The names of all input files in Axiom should end in “.input” otherwise Axiom will refuse to
read them.

If an input file is named foo.input you can feed the contents of the file to the command
prompt (as though you typed them) by writing: )read foo.input.

It is good practice to start each input file with the )clear all command so that all functions
and variables in the current environment are erased.

3.7.2 Blocks

The Axiom constructs that provide looping, choices, and user-defined functions all rely on
the notion of blocks. A block is a sequence of expressions which are evaluated in the order
that they appear except when it is modified by control expressions such as loops. To leave a
block prematurely use an expression of the form: BoolExpr => Expr where BoolExpr is any
Axiom expression that has type Boolean. The value and type of Expr determines the value
and type returned by the block.

If blocks are entered at the keyboard (as opposed to reading them from a text file) then
there is only one way of creating them. The syntax is:

(expression1; expression2; . . . ; expressionN)

In an input file a block can be constructed as above or by placing all the statements at the
same indentation level. When indentation is used to indicate program structure the block
is called a pile. As an example of a simple block a list of three integers can be constructed
using parentheses:

( a:=4; b:=1; c:=9; L:=[a,b,c])

[4, 1, 9]

Type: List PositiveInteger

Doing the same thing using piles in an input file you could type:

L :=

a:=4

b:=1
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c:=9

[a,b,c]

[4, 1, 9]

Type: List PositiveInteger

Since blocks have a type and a value they can be used as arguments to functions or as part of
other expressions. It should be pointed out that the following example is not recommended
practice but helps to illustrate the idea of blocks and their ability to return values:

sqrt(4.0 +

a:=3.0

b:=1.0

c:=a + b

c

)

2.8284271247 461900976

Type: Float

Note that indentation is extremely important. If the example above had the pile starting
at “a:=” moved left by two spaces so that the “a” was under the “(” of the first line then
the interpreter would signal an error. Furthermore if the closing parenthesis “)” is moved
up to give

sqrt(4.0 +

a:=3.0

b:=1.0

c:=a + b

c)

Line 1: sqrt(4.0 +

....A

Error A: Missing mate.

Line 2: a:=3.0

Line 3: b:=1.0

Line 4: c:=a + b

Line 5: c)

.........AB

Error A: (from A up to B) Ignored.

Error B: Improper syntax.

Error B: syntax error at top level

Error B: Possibly missing a )

5 error(s) parsing

then the parser will generate errors. If the parenthesis is shifted right by several spaces so
that it is in line with the “c” thus:

sqrt(4.0 +

a:=3.0

b:=1.0

c:=a + b

c

)

Line 1: sqrt(4.0 +

....A
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Error A: Missing mate.

Line 2: a:=3.0

Line 3: b:=1.0

Line 4: c:=a + b

Line 5: c

Line 6: )

.........A

Error A: (from A up to A) Ignored.

Error A: Improper syntax.

Error A: syntax error at top level

Error A: Possibly missing a )

5 error(s) parsing

a similar error will be raised. Finally, the “)” must be indented by at least one space relative
to the sqrt thus:

sqrt(4.0 +

a:=3.0

b:=1.0

c:=a + b

c

)

2.8284271247 461900976

Type: Float

or an error will be generated.

It can be seen that great care needs to be taken when constructing input files consisting
of piles of expressions. It would seem prudent to add one pile at a time and check if it
is acceptable before adding more, particularly if piles are nested. However, it should be
pointed out that the use of piles as values for functions is not very readable and so perhaps
the delicate nature of their interpretation should deter programmers from using them in
these situations. Using piles should really be restricted to constructing functions, etc. and
a small amount of rewriting can remove the need to use them as arguments. For example,
the previous block could easily be implemented as:

a:=3.0

b:=1.0

c:=a + b

sqrt(4.0 + c)

the )read yields:

a:=3.0

3.0

Type: Float

b:=1.0

1.0

Type: Float

c:=a + b

4.0
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Type: Float

sqrt(4.0 + c)

2.8284271247 461900976

Type: Float

which achieves the same result and is easier to understand. Note that this is still a pile but
it is not as fragile as the previous version.

3.7.3 Functions

Definitions of functions in Axiom are quite simple providing two things are observed. First,
the type of the function must either be completely specified or completely unspecified. Sec-
ond, the body of the function is assigned to the function identifier using the delayed assign-
ment operator “==”.

To specify the type of something the “:” operator is used. Thus to define a variable x to be
of type Fraction Integer we enter:

x : Fraction Integer

Type: Void

For functions the method is the same except that the arguments are placed in parentheses
and the return type is placed after the symbol “->”. Some examples of function definitions
taking zero, one, two, or three arguments and returning a list of integers are:

f : () -> List Integer

Type: Void

g : (Integer) -> List Integer

Type: Void

h : (Integer, Integer) -> List Integer

Type: Void

k : (Integer, Integer, Integer) -> List Integer

Type: Void

Now the actual function definitions might be:

f() == [ ]

Type: Void

g(a) == [a]

Type: Void

h(a,b) == [a,b]

Type: Void
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k(a,b,c) == [a,b,c]

Type: Void

with some invocations of these functions:

f()

Compiling function f with type () -> List Integer

[ ]

Type: List Integer

g(4)

Compiling function g with type Integer -> List Integer

[4]

Type: List Integer

h(2,9)

Compiling function h with type (Integer,Integer) -> List Integer

[2, 9]

Type: List Integer

k(-3,42,100)

Compiling function k with type (Integer,Integer,Integer) -> List

Integer

[−3, 42, 100]
Type: List Integer

The value returned by a function is either the value of the last expression evaluated or the
result of a return statement. For example, the following are effectively the same:

p : Integer -> Integer

Type: Void

p x == (a:=1; b:=2; a+b+x)

Type: Void

p x == (a:=1; b:=2; return(a+b+x))

Type: Void

Note that a block (pile) is assigned to the function identifier p and thus all the rules about
blocks apply to function definitions. Also there was only one argument so the parenthese
are not needed.

This is basically all that one needs to know about defining functions in Axiom – first specify
the complete type and then assign a block to the function name. The rest of this section
is concerned with defining more complex blocks than those in this section and as a result
function definitions will crop up continually particularly since they are a good way of testing
examples. Since the block structure is more complex we will use the pile notation and thus
have to use input files to read the piles.
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3.7.4 Choices

Apart from the “=>” operator that allows a block to exit before the end Axiom provides the
standard if-then-else construct. The general syntax is:

if BooleanExpr then Expr1 else Expr2

where “else Expr2” can be omitted. If the expression BooleanExpr evaluates to true then
Expr1 is executed otherwise Expr2 (if present) will be executed. An example of piles and
if-then-else is: (read from an input file)

h := 2.0

if h > 3.1 then

1.0

else

z:= cos(h)

max(x,0.5)

the )read yields:

h := 2.0

2.0

Type: Float

if h > 3.1 then

1.0

else

z:= cos(h)

max(x,0.5)

x

Type: Polynomial Float

Note the indentation – the “else” must be indented relative to the “if” otherwise it will
generate an error (Axiom will think there are two piles, the second one beginning with
“else”).

Any expression that has type Boolean can be used as BooleanExpr and the most common
will be those involving the relational operators “>”, “<”, and “=”. Usually the type of an
expression involving the equality operator “=” will be Boolean but in those situations when
it isn’t you may need to use the “@” operator to ensure that it is.

3.7.5 Loops

Loops in Axiom are regarded as expressions containing another expression called the loop
body. The loop body is executed zero or more times depending on the kind of loop. Loops
can be nested to any depth.

The repeat loop

The simplest kind of loop provided by Axiom is the repeat loop. The general syntax of this
is:

repeat loopBody
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This will cause Axiom to execute loopBody repeatedly until either a break or return
statement is encountered. If loopBody contains neither of these statements then it will loop
forever. The following piece of code will display the numbers from 1 to 4:

i:=1

repeat

if i > 4 then break

output(i)

i:=i+1

the )read yields:

i:=1

1

Type: PositiveInteger

repeat

if i > 4 then break

output(i)

i:=i+1

1

2

3

4

Type: Void

It was mentioned that loops will only be left when either a break or return statement is
encountered so why can’t one use the “=>” operator? The reason is that the “=>” operator
tells Axiom to leave the current block whereas break leaves the current loop. The return
statement leaves the current function.

To skip the rest of a loop body and continue the next iteration of the loop use the iterate
statement (the -- starts a comment in Axiom)

i := 0

repeat

i := i + 1

if i > 6 then break

-- Return to start if i is odd

if odd?(i) then iterate

output(i)

the )read yields:

i := 0

0

Type: NonNegativeInteger

repeat

i := i + 1

if i > 6 then break

-- Return to start if i is odd

if odd?(i) then iterate

output(i)
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2

4

6

Type: Void

The while loop

The while statement extends the basic repeat loop to place the control of leaving the loop
at the start rather than have it buried in the middle. Since the body of the loop is still part
of a repeat loop, break and “=>” work in the same way as in the previous section. The
general syntax of a while loop is:

while BoolExpr repeat loopBody

As before, BoolExpr must be an expression of type Boolean. Before the body of the loop is
executed BoolExpr is tested. If it evaluates to true then the loop body is entered otherwise
the loop is terminated. Multiple conditions can be applied using the logical operators such
as and or by using several while statements before the repeat.

By using and in the test we get

x:=1

y:=1

while x < 4 and y < 10 repeat

output [x,y]

x := x + 1

y := y + 2

the )read yields:

x:=1

1

Type: PositiveInteger

y:=1

1

Type: PositiveInteger

while x < 4 and y < 10 repeat

output [x,y]

x := x + 1

y := y + 2

[1,1]

[2,3]

[3,5]

Type: Void

We could use two parallel whiles

x:=1

y:=1

while x < 4 while y < 10 repeat

output [x,y]
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x := x + 1

y := y + 2

the )read yields:

x:=1

1

Type: PositiveInteger

y:=1

1

Type: PositiveInteger

while x < 4 while y < 10 repeat

output [x,y]

x := x + 1

y := y + 2

[1,1]

[2,3]

[3,5]

Type: Void

Note that the last example using two while statements is not a nested loop but the following
one is:

x:=1

y:=1

while x < 4 repeat

while y < 10 repeat

output [x,y]

x := x + 1

y := y + 2

the )read yields:
1

Type: PositiveInteger

y:=1

1

Type: PositiveInteger

while x < 4 repeat

while y < 10 repeat

output [x,y]

x := x + 1

y := y + 2

[1,1]

[2,3]

[3,5]

[4,7]

[5,9]
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Type: Void

Suppose that, given a matrix of arbitrary size, we find the position and value of the first
negative element by examining the matrix in row-major order:

m := matrix [ [ 21, 37, 53, 14 ],_

[ 8, 22,-24, 16 ],_

[ 2, 10, 15, 14 ],_

[ 26, 33, 55,-13 ] ]

lastrow := nrows(m)

lastcol := ncols(m)

r := 1

while r <= lastrow repeat

c := 1 -- Index of first column

while c <= lastcol repeat

if elt(m,r,c) < 0 then

output [r,c,elt(m,r,c)]

r := lastrow

break -- Don’t look any further

c := c + 1

r := r + 1

the )read yields:

m := matrix [ [ 21, 37, 53, 14 ],_

[ 8, 22,-24, 16 ],_

[ 2, 10, 15, 14 ],_

[ 26, 33, 55,-13 ] ]
21 37 53 14
8 22 −24 16
2 10 15 14
26 33 55 −13


Type: Matrix Integer

lastrow := nrows(m)

4

Type: PositiveInteger

lastcol := ncols(m)

4

Type: PositiveInteger

r := 1

1

Type: PositiveInteger

while r <= lastrow repeat

c := 1 -- Index of first column

while c <= lastcol repeat

if elt(m,r,c) < 0 then

output [r,c,elt(m,r,c)]

r := lastrow
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break -- Don’t look any further

c := c + 1

r := r + 1

[2,3,- 24]

Type: Void

The for loop

The last loop statement of interest is the for loop. There are two ways of creating a for
loop. The first way uses either a list or a segment:

for var in seg repeat loopBody
for var in list repeat loopBody

where var is an index variable which is iterated over the values in seg or list. The value seg
is a segment such as 1 . . . 10 or 1 . . . and list is a list of some type. For example:

We can iterate the block thus:

for i in 1..10 repeat

~prime?(i) => iterate

output(i)

the )read yields:

for i in 1..10 repeat

~prime?(i) => iterate

output(i)

2

3

5

7

Type: Void

We can iterate over a list

for w in ["This", "is", "your", "life!"] repeat

output(w)

the )read yields:

for w in ["This", "is", "your", "life!"] repeat

output(w)

This

is

your

life!

Type: Void

The second form of the for loop syntax includes a “such that” clause which must be of
type Boolean:

for var in seg | BoolExpr repeat loopBody
for var in list | BoolExpr repeat loopBody
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We can iterate over a segment

for i in 1..10 | prime?(i) repeat

output(i)

the )read yields:

for i in 1..10 | prime?(i) repeat

output(i)

2

3

5

7

Type: Void

or over a list

for i in [1,2,3,4,5,6,7,8,9,10] | prime?(i) repeat

output(i)

the )read yields:

for i in [1,2,3,4,5,6,7,8,9,10] | prime?(i) repeat

output(i)

2

3

5

7

Type: Void

You can also use a while clause:

for i in 1.. while i < 7 repeat

if even?(i) then output(i)

the )read yields:

for i in 1.. while i < 7 repeat

if even?(i) then output(i)

2

4

6

Type: Void

Using the “such that” clause makes this appear simpler:

for i in 1.. | even?(i) while i < 7 repeat

output(i)

the )read yields:

for i in 1.. | even?(i) while i < 7 repeat

output(i)

2

4

6
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Type: Void

You can use multiple for clauses to iterate over several sequences in parallel:

for a in 1..4 for b in 5..8 repeat

output [a,b]

the )read yields:

for a in 1..4 for b in 5..8 repeat

output [a,b]

[1,5]

[2,6]

[3,7]

[4,8]

Type: Void

As a general point it should be noted that any symbols referred to in the “such that” and
while clauses must be pre-defined. This either means that the symbols must have been
defined in an outer level (e.g. in an enclosing loop) or in a for clause appearing before the
“such that” or while. For example:

for a in 1..4 repeat

for b in 7..9 | prime?(a+b) repeat

output [a,b,a+b]

the )read yields:

for a in 1..4 repeat

for b in 7..9 | prime?(a+b) repeat

output [a,b,a+b]

[2,9,11]

[3,8,11]

[4,7,11]

[4,9,13]

Type: Void

Finally, the for statement has a by clause to specify the step size. This makes it possible to
iterate over the segment in reverse order:

for a in 1..4 for b in 8..5 by -1 repeat

output [a,b]

the )read yields:

for a in 1..4 for b in 8..5 by -1 repeat

output [a,b]

[1,8]

[2,7]

[3,6]

[4,5]

Type: Void

Note that without the “by -1” the segment 8..5 is empty so there is nothing to iterate over
and the loop exits immediately.
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3.8 Numbers

Axiom distinguishes very carefully between different kinds of numbers, how they are repre-
sented and what their properties are. Here are a sampling of some of these kinds of numbers
and some things you can do with them.

Integer arithmetic is always exact.

11**13 * 13**11 * 17**7 - 19**5 * 23**3

25387751112538918594666224484237298

Type: PositiveInteger

Integers can be represented in factored form.

factor 643238070748569023720594412551704344145570763243

1113 1311 177 195 233 292

Type: Factored Integer

Results stay factored when you do arithmetic. Note that the 12 is automatically factored
for you.

% * 12

22 3 1113 1311 177 195 233 292

Type: Factored Integer

Integers can also be displayed to bases other than 10. This is an integer in base 11.

radix(25937424601,11)

10000000000

Type: RadixExpansion 11

Roman numerals are also available for those special occasions.

roman(1992)

MCMXCII

Type: RomanNumeral

Rational number arithmetic is also exact.

r := 10 + 9/2 + 8/3 + 7/4 + 6/5 + 5/6 + 4/7 + 3/8 + 2/9

55739

2520

Type: Fraction Integer

To factor fractions, you have to map factor onto the numerator and denominator.

map(factor,r)

139 401

23 32 5 7
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Type: Fraction Factored Integer

SingleInteger refers to machine word-length integers. In English, this expression means
“11 as a small integer”.

11@SingleInteger

11

Type: SingleInteger

Machine double-precision floating-point numbers are also available for numeric and graphical
applications.

123.21@DoubleFloat

123.21000000000001

Type: DoubleFloat

The normal floating-point type in Axiom, Float, is a software implementation of floating-
point numbers in which the exponent and the mantissa may have any number of digits. The
types Complex(Float) and Complex(DoubleFloat) are the corresponding software imple-
mentations of complex floating-point numbers.

This is a floating-point approximation to about twenty digits. The “::” is used here to
change from one kind of object (here, a rational number) to another (a floating-point num-
ber).

r :: Float

22.118650793650793651

Type: Float

Use digits to change the number of digits in the representation. This operation returns the
previous value so you can reset it later.

digits(22)

20

Type: PositiveInteger

To 22 digits of precision, the number eπ
√
163.0 appears to be an integer.

exp(%pi * sqrt 163.0)

262537412640768744.0

Type: Float

Increase the precision to forty digits and try again.

digits(40); exp(%pi * sqrt 163.0)

26253741 2640768743.9999999999 9925007259 76

Type: Float

Here are complex numbers with rational numbers as real and imaginary parts.

(2/3 + %i)**3



68 CHAPTER 3. STARTING AXIOM

−46

27
+

1

3
i

Type: Complex Fraction Integer

The standard operations on complex numbers are available.

conjugate %

−46

27
− 1

3
i

Type: Complex Fraction Integer

You can factor complex integers.

factor(89 - 23 * %i)

−(1 + i) (2 + i)
2
(3 + 2 i)

2

Type: Factored Complex Integer

Complex numbers with floating point parts are also available.

exp(%pi/4.0 * %i)

0.7071067811 8654752440 0844362104 8490392849+

0.7071067811 8654752440 0844362104 8490392848 i

Type: Complex Float

The real and imaginary parts can be symbolic.

complex(u,v)

u+ v i

Type: Complex Polynomial Integer

Of course, you can do complex arithmetic with these also.

% ** 2

−v2 + u2 + 2 u v i

Type: Complex Polynomial Integer

Every rational number has an exact representation as a repeating decimal expansion

decimal(1/352)

0.0028409

Type: DecimalExpansion

A rational number can also be expressed as a continued fraction.

continuedFraction(6543/210)

31 +
1|
|6

+
1|
|2

+
1|
|1

+
1|
|3

Type: ContinuedFraction Integer

Also, partial fractions can be used and can be displayed in a compact format
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partialFraction(1,factorial(10))

159

28
− 23

34
− 12

52
+

1

7
Type: PartialFraction Integer

or expanded format.

padicFraction(%)

1

2
+

1

24
+

1

25
+

1

26
+

1

27
+

1

28
− 2

32
− 1

33
− 2

34
− 2

5
− 2

52
+

1

7
Type: PartialFraction Integer

Like integers, bases (radices) other than ten can be used for rational numbers. Here we use
base eight.

radix(4/7, 8)

0.4

Type: RadixExpansion 8

Of course, there are complex versions of these as well. Axiom decides to make the result a
complex rational number.

% + 2/3*%i

4

7
+

2

3
i

Type: Complex Fraction Integer

You can also use Axiom to manipulate fractional powers.

(5 + sqrt 63 + sqrt 847)**(1/3)

3

√
14
√
7 + 5

Type: AlgebraicNumber

You can also compute with integers modulo a prime.

x : PrimeField 7 := 5

5

Type: PrimeField 7

Arithmetic is then done modulo 7.

x**3

6

Type: PrimeField 7

Since 7 is prime, you can invert nonzero values.

1/x

3

Type: PrimeField 7
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You can also compute modulo an integer that is not a prime.

y : IntegerMod 6 := 5

5

Type: IntegerMod 6

All of the usual arithmetic operations are available.

y**3

5

Type: IntegerMod 6

Inversion is not available if the modulus is not a prime number.

1/y

There are 12 exposed and 13 unexposed library operations named /

having 2 argument(s) but none was determined to be applicable.

Use HyperDoc Browse, or issue

)display op /

to learn more about the available operations. Perhaps

package-calling the operation or using coercions on the arguments

will allow you to apply the operation.

Cannot find a definition or applicable library operation named /

with argument type(s)

PositiveInteger

IntegerMod 6

Perhaps you should use "@" to indicate the required return type,

or "$" to specify which version of the function you need.

This defines a to be an algebraic number, that is, a root of a polynomial equation.

a := rootOf(a**5 + a**3 + a**2 + 3,a)

a

Type: Expression Integer

Computations with a are reduced according to the polynomial equation.

(a + 1)**10

−85 a4 − 264 a3 − 378 a2 − 458 a− 287

Type: Expression Integer

Define b to be an algebraic number involving a.

b := rootOf(b**4 + a,b)

b

Type: Expression Integer

Do some arithmetic.

2/(b - 1)
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2

b− 1

Type: Expression Integer

To expand and simplify this, call ratDenom to rationalize the denominator.

ratDenom(%) (
a4 − a3 + 2 a2 − a+ 1

)
b3 +

(
a4 − a3 + 2 a2 − a+ 1

)
b2+(

a4 − a3 + 2 a2 − a+ 1
)
b+ a4 − a3 + 2 a2 − a+ 1

Type: Expression Integer

If we do this, we should get b.

2/%+1 (a4 − a3 + 2 a2 − a+ 1
)
b3 +

(
a4 − a3 + 2 a2 − a+ 1

)
b2+(

a4 − a3 + 2 a2 − a+ 1
)
b+ a4 − a3 + 2 a2 − a+ 3


(a4 − a3 + 2 a2 − a+ 1

)
b3 +

(
a4 − a3 + 2 a2 − a+ 1

)
b2+(

a4 − a3 + 2 a2 − a+ 1
)
b+ a4 − a3 + 2 a2 − a+ 1


Type: Expression Integer

But we need to rationalize the denominator again.

ratDenom(%)

b

Type: Expression Integer

Types Quaternion and Octonion are also available. Multiplication of quaternions is non-
commutative, as expected.

q:=quatern(1,2,3,4)*quatern(5,6,7,8) - quatern(5,6,7,8)*quatern(1,2,3,4)

−8 i+ 16 j − 8 k

Type: Quaternion Integer

3.9 Data Structures

Axiom has a large variety of data structures available. Many data structures are particularly
useful for interactive computation and others are useful for building applications. The data
structures of Axiom are organized into category hierarchies.

A list is the most commonly used data structure in Axiom for holding objects all of the
same type. The name list is short for “linked-list of nodes.” Each node consists of a value
(first) and a link (rest) that points to the next node, or to a distinguished value denoting
the empty list. To get to, say, the third element, Axiom starts at the front of the list, then
traverses across two links to the third node.

Write a list of elements using square brackets with commas separating the elements.
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u := [1,-7,11]

[1,−7, 11]

Type: List Integer

This is the value at the third node. Alternatively, you can say u.3.

first rest rest u

11

Type: PositiveInteger

Many operations are defined on lists, such as: empty?, to test that a list has no elements;
cons(x, l), to create a new list with first element x and rest l; reverse, to create a new list
with elements in reverse order; and sort, to arrange elements in order.

An important point about lists is that they are “mutable”: their constituent elements and
links can be changed “in place.” To do this, use any of the operations whose names end with
the character “!”.

The operation concat!(u, v) replaces the last link of the list u to point to some other list v.
Since u refers to the original list, this change is seen by u.

concat!(u,[9,1,3,-4]); u

[1,−7, 11, 9, 1, 3,−4]

Type: List Integer

A cyclic list is a list with a “cycle”: a link pointing back to an earlier node of the list. To
create a cycle, first get a node somewhere down the list.

lastnode := rest(u,3)

[9, 1, 3,−4]

Type: List Integer

Use setrest! to change the link emanating from that node to point back to an earlier part
of the list.

setrest!(lastnode,rest(u,2)); u [
1,−7, 11, 9

]
Type: List Integer

A stream is a structure that (potentially) has an infinite number of distinct elements. Think
of a stream as an “infinite list” where elements are computed successively.

Create an infinite stream of factored integers. Only a certain number of initial elements are
computed and displayed.

[factor(i) for i in 2.. by 2][
2, 22, 2 3, 23, 2 5, 22 3, 2 7, 24, 2 32, 22 5, . . .

]
Type: Stream Factored Integer



3.9. DATA STRUCTURES 73

Axiom represents streams by a collection of already-computed elements together with a
function to compute the next element “on demand.” Asking for the n-th element causes
elements 1 through n to be evaluated.

%.36

23 32

Type: Factored Integer

Streams can also be finite or cyclic. They are implemented by a linked list structure similar
to lists and have many of the same operations. For example, first and rest are used to
access elements and successive nodes of a stream.

A one-dimensional array is another data structure used to hold objects of the same type.
Unlike lists, one-dimensional arrays are inflexible—they are implemented using a fixed block
of storage. Their advantage is that they give quick and equal access time to any element.

A simple way to create a one-dimensional array is to apply the operation oneDimension-
alArray to a list of elements.

a := oneDimensionalArray [1, -7, 3, 3/2][
1,−7, 3, 3

2

]
Type: OneDimensionalArray Fraction Integer

One-dimensional arrays are also mutable: you can change their constituent elements “in
place.”

a.3 := 11; a [
1,−7, 11, 3

2

]
Type: OneDimensionalArray Fraction Integer

However, one-dimensional arrays are not flexible structures. You cannot destructively con-
cat! them together.

concat!(a,oneDimensionalArray [1,-2])

There are 5 exposed and 0 unexposed library operations named concat!

having 2 argument(s) but none was determined to be applicable.

Use HyperDoc Browse, or issue

)display op concat!

to learn more about the available operations. Perhaps

package-calling the operation or using coercions on the arguments

will allow you to apply the operation.

Cannot find a definition or applicable library operation named

concat! with argument type(s)

OneDimensionalArray Fraction Integer

OneDimensionalArray Integer

Perhaps you should use "@" to indicate the required return type,

or "$" to specify which version of the function you need.
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Examples of datatypes similar to OneDimensionalArray are: Vector (vectors are mathe-
matical structures implemented by one-dimensional arrays), String (arrays of “characters,”
represented by byte vectors), and Bits (represented by “bit vectors”).

A vector of 32 bits, each representing the Boolean value true.

bits(32,true)

"11111111111111111111111111111111"

Type: Bits

A flexible array is a cross between a list and a one-dimensional array. Like a one-dimensional
array, a flexible array occupies a fixed block of storage. Its block of storage, however, has
room to expand. When it gets full, it grows (a new, larger block of storage is allocated);
when it has too much room, it contracts.

Create a flexible array of three elements.

f := flexibleArray [2, 7, -5]

[2, 7,−5]

Type: FlexibleArray Integer

Insert some elements between the second and third elements.

insert!(flexibleArray [11, -3],f,2)

[2, 11,−3, 7,−5]

Type: FlexibleArray Integer

Flexible arrays are used to implement “heaps.” A heap is an example of a data structure
called a priority queue, where elements are ordered with respect to one another. A heap is
organized so as to optimize insertion and extraction of maximum elements. The extract!
operation returns the maximum element of the heap, after destructively removing that ele-
ment and reorganizing the heap so that the next maximum element is ready to be delivered.

An easy way to create a heap is to apply the operation heap to a list of values.

h := heap [-4,7,11,3,4,-7]

[11, 4, 7,−4, 3,−7]

Type: Heap Integer

This loop extracts elements one-at-a-time from h until the heap is exhausted, returning the
elements as a list in the order they were extracted.

[extract!(h) while not empty?(h)]

[11, 7, 4, 3,−4,−7]

Type: List Integer

A binary tree is a “tree” with at most two branches per node: it is either empty, or else
is a node consisting of a value, and a left and right subtree (again, binary trees). Ex-
amples of binary tree types are BinarySearchTree, PendantTree, TournamentTree, and
BalancedBinaryTree.
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A binary search tree is a binary tree such that, for each node, the value of the node is greater
than all values (if any) in the left subtree, and less than or equal all values (if any) in the
right subtree.

binarySearchTree [5,3,2,9,4,7,11]

[[2, 3, 4], 5, [7, 9, 11]]

Type: BinarySearchTree PositiveInteger

A balanced binary tree is useful for doing modular computations. Given a list lm of moduli,
modTree(a, lm) produces a balanced binary tree with the values a mod m at its leaves.

modTree(8,[2,3,5,7])

[0, 2, 3, 1]

Type: List Integer

A set is a collection of elements where duplication and order is irrelevant. Sets are always
finite and have no corresponding structure like streams for infinite collections.

Create sets using braces “{“ and “}” rather than brackets.

fs := set [1/3,4/5,-1/3,4/5] {
−1

3
,
1

3
,
4

5

}
Type: Set Fraction Integer

A multiset is a set that keeps track of the number of duplicate values.

For all the primes p between 2 and 1000, find the distribution of p mod 5.

multiset [x rem 5 for x in primes(2,1000)]

{0, 42: 3, 40: 1, 38: 4, 47: 2}

Type: Multiset Integer

A table is conceptually a set of “key–value” pairs and is a generalization of a multiset.
For examples of tables, see AssociationList, HashTable, KeyedAccessFile, Library,
SparseTable, StringTable, and Table. The domain Table(Key, Entry) provides a general-
purpose type for tables with values of type Entry indexed by keys of type Key.

Compute the above distribution of primes using tables. First, let t denote an empty table of
keys and values, each of type Integer.

t : Table(Integer,Integer) := empty()

table()

Type: Table(Integer,Integer)

We define a function howMany to return the number of values of a given modulus k seen
so far. It calls search(k, t) which returns the number of values stored under the key k in
table t, or ‘‘failed’’ if no such value is yet stored in t under k.

In English, this says “Define howMany(k) as follows. First, let n be the value of search(k, t).
Then, if n has the value ”failed”, return the value 1; otherwise return n+ 1.”

howMany(k) == (n:=search(k,t); n case "failed" => 1; n+1)
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Type: Void

Run through the primes to create the table, then print the table. The expression t.m :=

howMany(m) updates the value in table t stored under key m.

for p in primes(2,1000) repeat (m:= p rem 5; t.m:= howMany(m)); t

Compiling function howMany with type Integer -> Integer

table (2 = 47, 4 = 38, 1 = 40, 3 = 42, 0 = 1)

Type: Table(Integer,Integer)

A record is an example of an inhomogeneous collection of objects.A record consists of a set
of named selectors that can be used to access its components.

Declare that daniel can only be assigned a record with two prescribed fields.

daniel : Record(age : Integer, salary : Float)

Type: Void

Give daniel a value, using square brackets to enclose the values of the fields.

daniel := [28, 32005.12]

[age = 28, salary = 32005.12]

Type: Record(age: Integer,salary: Float)

Give daniel a raise.

daniel.salary := 35000; daniel

[age = 28, salary = 35000.0]

Type: Record(age: Integer,salary: Float)

A union is a data structure used when objects have multiple types.

Let dog be either an integer or a string value.

dog: Union(licenseNumber: Integer, name: String)

Type: Void

Give dog a name.

dog := "Whisper"

"Whisper"

Type: Union(name: String,...)

All told, there are over forty different data structures in Axiom. Using the domain construc-
tors you can add your own data structure or extend an existing one. Choosing the right data
structure for your application may be the key to obtaining good performance.

3.10 Expanding to Higher Dimensions

To get higher dimensional aggregates, you can create one-dimensional aggregates with el-
ements that are themselves aggregates, for example, lists of lists, one-dimensional arrays
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of lists of multisets, and so on. For applications requiring two-dimensional homogeneous
aggregates, you will likely find two-dimensional arrays and matrices most useful.

The entries in TwoDimensionalArray and Matrix objects are all the same type, except
that those for Matrix must belong to a Ring. You create and access elements in roughly
the same way. Since matrices have an understood algebraic structure, certain algebraic
operations are available for matrices but not for arrays. Because of this, we limit our dis-
cussion here to Matrix, that can be regarded as an extension of TwoDimensionalArray. See
TwoDimensionalArray for more information about arrays. There are also Axiom’s linear
algebra facilities like, see Matrix, Permanent, SquareMatrix, Vector,

You can create a matrix from a list of lists, where each of the inner lists represents a row of
the matrix.

m := matrix([ [1,2], [3,4] ]) [
1 2
3 4

]
Type: Matrix Integer

The “collections” construct is useful for creating matrices whose entries are given by formulas.

matrix([ [1/(i + j - x) for i in 1..4] for j in 1..4])
− 1

x−2 − 1
x−3 − 1

x−4 − 1
x−5

− 1
x−3 − 1

x−4 − 1
x−5 − 1

x−6

− 1
x−4 − 1

x−5 − 1
x−6 − 1

x−7

− 1
x−5 − 1

x−6 − 1
x−7 − 1

x−8


Type: Matrix Fraction Polynomial Integer

Let vm denote the three by three Vandermonde matrix.

vm := matrix [ [1,1,1], [x,y,z], [x*x,y*y,z*z] ] 1 1 1
x y z
x2 y2 z2


Type: Matrix Polynomial Integer

Use this syntax to extract an entry in the matrix.

vm(3,3)

z2

Type: Polynomial Integer

You can also pull out a row or a column.

column(vm,2) [
1, y, y2

]
Type: Vector Polynomial Integer

You can do arithmetic.
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vm * vm  x2 + x+ 1 y2 + y + 1 z2 + z + 1
x2 z + x y + x y2 z + y2 + x z3 + y z + x

x2 z2 + x y2 + x2 y2 z2 + y3 + x2 z4 + y2 z + x2


Type: Matrix Polynomial Integer

You can perform operations such as transpose, trace, and determinant.

factor determinant vm

(y − x) (z − y) (z − x)

Type: Factored Polynomial Integer

3.11 Writing Your Own Functions

Axiom provides you with a very large library of predefined operations and objects to compute
with. You can use the Axiom library of constructors to create new objects dynamically of
quite arbitrary complexity. For example, you can make lists of matrices of fractions of
polynomials with complex floating point numbers as coefficients. Moreover, the library
provides a wealth of operations that allow you to create and manipulate these objects.

For many applications, you need to interact with the interpreter and write some Axiom
programs to tackle your application. Axiom allows you to write functions interactively,
thereby effectively extending the system library. Here we give a few simple examples.

We begin by looking at several ways that you can define the “factorial” function in Axiom.
The first way is to give a piece-wise definition of the function. This method is best for a
general recurrence relation since the pieces are gathered together and compiled into an effi-
cient iterative function. Furthermore, enough previously computed values are automatically
saved so that a subsequent call to the function can pick up from where it left off.

Define the value of fact at 0.

fact(0) == 1

Type: Void

Define the value of fact(n) for general n.

fact(n) == n*fact(n-1)

Type: Void

Ask for the value at 50. The resulting function created by Axiom computes the value by
iteration.

fact(50)

Compiling function fact with type Integer -> Integer

Compiling function fact as a recurrence relation.

30414093201713378043612608166064768844377641568960512000000000000

Type: PositiveInteger

A second definition uses an if-then-else and recursion.
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fac(n) == if n < 3 then n else n * fac(n - 1)

Type: Void

This function is less efficient than the previous version since each iteration involves a recursive
function call.

fac(50)

30414093201713378043612608166064768844377641568960512000000000000

Type: PositiveInteger

A third version directly uses iteration.

fa(n) == (a := 1; for i in 2..n repeat a := a*i; a)

Type: Void

This is the least space-consumptive version.

fa(50)

Compiling function fa with type Integer -> Integer

30414093201713378043612608166064768844377641568960512000000000000

Type: PositiveInteger

A final version appears to construct a large list and then reduces over it with multiplication.

f(n) == reduce(*,[i for i in 2..n])

Type: Void

In fact, the resulting computation is optimized into an efficient iteration loop equivalent to
that of the third version.

f(50)

Compiling function f with type

PositiveInteger -> PositiveInteger

30414093201713378043612608166064768844377641568960512000000000000

Type: PositiveInteger

The library version uses an algorithm that is different from the four above because it highly
optimizes the recurrence relation definition of factorial.

factorial(50)

30414093201713378043612608166064768844377641568960512000000000000

Type: PositiveInteger

Remember you are not limited to one-line functions in Axiom. If you place your function
definitions in .input files , you can have multi-line functions that use indentation for group-
ing.

Given n elements, diagonalMatrix creates an n by n matrix with those elements down the
diagonal. This function uses a permutation matrix that interchanges the ith and jth rows
of a matrix by which it is right-multiplied.
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This function definition shows a style of definition that can be used in .input files. Indenta-
tion is used to create blocks: sequences of expressions that are evaluated in sequence except
as modified by control statements such as if-then-else and return.

permMat(n, i, j) ==

m := diagonalMatrix

[(if i = k or j = k then 0 else 1)

for k in 1..n]

m(i,j) := 1

m(j,i) := 1

m

This creates a four by four matrix that interchanges the second and third rows.

p := permMat(4,2,3)

Compiling function permMat with type (PositiveInteger,

PositiveInteger,PositiveInteger) -> Matrix Integer
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Type: Matrix Integer

Create an example matrix to permute.

m := matrix [ [4*i + j for j in 1..4] for i in 0..3]
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16


Type: Matrix Integer

Interchange the second and third rows of m.

permMat(4,2,3) * m 
1 2 3 4
9 10 11 12
5 6 7 8
13 14 15 16


Type: Matrix Integer

A function can also be passed as an argument to another function, which then applies the
function or passes it off to some other function that does. You often have to declare the type
of a function that has functional arguments.

This declares t to be a two-argument function that returns a Float. The first argument is
a function that takes one Float argument and returns a Float.

t : (Float -> Float, Float) -> Float

Type: Void

This is the definition of t.
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t(fun, x) == fun(x)**2 + sin(x)**2

Type: Void

We have not defined a cos in the workspace. The one from the Axiom library will do.

t(cos, 5.2058)

1.0

Type: Float

Here we define our own (user-defined) function.

cosinv(y) == cos(1/y)

Type: Void

Pass this function as an argument to t.

t(cosinv, 5.2058)

1.7392237241 8005164925 4147684772 932520785

Type: Float

Axiom also has pattern matching capabilities for simplification of expressions and for defining
new functions by rules. For example, suppose that you want to apply regularly a transfor-
mation that groups together products of radicals:

√
a
√
b 7→
√
ab, (∀a)(∀b)

Note that such a transformation is not generally correct. Axiom never uses it automatically.

Give this rule the name groupSqrt.

groupSqrt := rule(sqrt(a) * sqrt(b) == sqrt(a*b))

%C
√
a
√
b== %C

√
a b

Type: RewriteRule(Integer,Integer,Expression Integer)

Here is a test expression.

a := (sqrt(x) + sqrt(y) + sqrt(z))**4(
(4 z + 4 y + 12 x)

√
y + (4 z + 12 y + 4 x)

√
x
) √

z+

(12 z + 4 y + 4 x)
√
x
√
y + z2 + (6 y + 6 x) z + y2 + 6 x y + x2

Type: Expression Integer

The rule groupSqrt successfully simplifies the expression.

groupSqrt a

(4 z + 4 y + 12 x)
√
y z + (4 z + 12 y + 4 x)

√
x z+

(12 z + 4 y + 4 x)
√
x y + z2 + (6 y + 6 x) z + y2 + 6 x y + x2

Type: Expression Integer
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3.12 Polynomials

Polynomials are the commonly used algebraic types in symbolic computation. Interactive
users of Axiom generally only see one type of polynomial they can use: Polynomial(R).
This type represents polynomials in any number of unspecified variables over a particular
coefficient domain R. This type represents its coefficients sparsely: only terms with non-zero
coefficients are represented.

In building applications, many other kinds of polynomial representations are useful. Polyno-
mials may have one variable or multiple variables, the variables can be named or unnamed,
the coefficients can be stored sparsely or densely. So-called “distributed multivariate poly-
nomials” store polynomials as coefficients paired with vectors of exponents. This type is
particularly efficient for use in algorithms for solving systems of non-linear polynomial equa-
tions.

The polynomial constructor most familiar to the interactive user is Polynomial.

(x**2 - x*y**3 +3*y)**2

x2 y6 − 6 x y4 − 2 x3 y3 + 9 y2 + 6 x2 y + x4

Type: Polynomial Integer

If you wish to restrict the variables used, UnivariatePolynomial provides polynomials in
one variable.

p: UP(x,INT) := (3*x-1)**2 * (2*x + 8)

18 x3 + 60 x2 − 46 x+ 8

Type: UnivariatePolynomial(x,Integer)

The constructor MultivariatePolynomial, which can be abbreviated as MPOLY, provides
polynomials in one or more specified variables.

m: MPOLY([x,y],INT) := (x**2-x*y**3+3*y)**2

x4 − 2 y3 x3 +
(
y6 + 6 y

)
x2 − 6 y4 x+ 9 y2

Type: MultivariatePolynomial([x,y],Integer)

You can change the way the polynomial appears by modifying the variable ordering in the
explicit list.

m :: MPOLY([y,x],INT)

x2 y6 − 6 x y4 − 2 x3 y3 + 9 y2 + 6 x2 y + x4

Type: MultivariatePolynomial([y,x],Integer)

The constructor DistributedMultivariatePolynomial, which can be abbreviated as DMP,
provides polynomials in one or more specified variables with the monomials ordered lexico-
graphically.

m :: DMP([y,x],INT)

y6 x2 − 6 y4 x− 2 y3 x3 + 9 y2 + 6 y x2 + x4

Type: DistributedMultivariatePolynomial([y,x],Integer)
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The constructor HomogeneousDistributedMultivariatePolynomial, which can be abbre-
viated as HDMP, is similar except that the monomials are ordered by total order refined by
reverse lexicographic order.

m :: HDMP([y,x],INT)

y6 x2 − 2 y3 x3 − 6 y4 x+ x4 + 6 y x2 + 9 y2

Type: HomogeneousDistributedMultivariatePolynomial([y,x],Integer)

More generally, the domain constructor GeneralDistributedMultivariatePolynomial al-
lows the user to provide an arbitrary predicate to define his own term ordering. These last
three constructors are typically used in Gröbner basis applications and when a flat (that is,
non-recursive) display is wanted and the term ordering is critical for controlling the compu-
tation.

3.13 Limits

Axiom’s limit function is usually used to evaluate limits of quotients where the numerator
and denominator both tend to zero or both tend to infinity. To find the limit of an expression
f as a real variable x tends to a limit value a, enter limit(f, x=a). Use complexLimit if
the variable is complex.

You can take limits of functions with parameters.

g := csc(a*x) / csch(b*x)

csc (a x)

csch (b x)

Type: Expression Integer

As you can see, the limit is expressed in terms of the parameters.

limit(g,x=0)

b

a

Type: Union(OrderedCompletion Expression Integer,...)

A variable may also approach plus or minus infinity:

h := (1 + k/x)**x

x+ k

x

x

Type: Expression Integer

Use %plusInfinity and %minusInfinity to denote ∞ and −∞.

limit(h,x=%plusInfinity)

ek

Type: Union(OrderedCompletion Expression Integer,...)

A function can be defined on both sides of a particular value, but may tend to different limits
as its variable approaches that value from the left and from the right.
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limit(sqrt(y**2)/y,y = 0)

[leftHandLimit = −1, rightHandLimit = 1]

Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression

Integer,"failed"),rightHandLimit: Union(OrderedCompletion Expression

Integer,"failed")),...)

As x approaches 0 along the real axis, exp(-1/x**2) tends to 0.

limit(exp(-1/x**2),x = 0)

0

Type: Union(OrderedCompletion Expression Integer,...)

However, if x is allowed to approach 0 along any path in the complex plane, the limiting
value of exp(-1/x**2) depends on the path taken because the function has an essential
singularity at x = 0. This is reflected in the error message returned by the function.

complexLimit(exp(-1/x**2),x = 0)

"failed"

Type: Union("failed",...)

3.14 Series

Axiom also provides power series. By default, Axiom tries to compute and display the
first ten elements of a series. Use )set streams calculate to change the default value to
something else. For the purposes of this document, we have used this system command to
display fewer than ten terms.

You can convert a functional expression to a power series by using the operation series. In
this example, sin(a*x) is expanded in powers of (x− 0), that is, in powers of x.

series(sin(a*x),x = 0)

a x− a3

6
x3 +

a5

120
x5 − a7

5040
x7 +

a9

362880
x9 − a11

39916800
x11 +O

(
x12
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

This expression expands sin(a*x) in powers of (x - %pi/4).

series(sin(a*x),x = %pi/4)

sin
(a π

4

)
+ a cos

(a π

4

) (
x− π

4

)
−

a2 sin
(
a π
4

)
2

(
x− π

4

)2
−

a3 cos
(
a π
4

)
6

(
x− π

4

)3
+

a4 sin
(
a π
4

)
24

(
x− π

4

)4
+

a5 cos
(
a π
4

)
120

(
x− π

4

)5
−

a6 sin
(
a π
4

)
720

(
x− π

4

)6
−

a7 cos
(
a π
4

)
5040

(
x− π

4

)7
+
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a8 sin
(
a π
4

)
40320

(
x− π

4

)8
+

a9 cos
(
a π
4

)
362880

(
x− π

4

)9
−

a10 sin
(
a π
4

)
3628800

(
x− π

4

)10
+O

((
x− π

4

)11)
Type: UnivariatePuiseuxSeries(Expression Integer,x,pi/4)

Axiom provides Puiseux series: series with rational number exponents. The first argument
to series is an in-place function that computes the n-th coefficient. (Recall that the “+->”
is an infix operator meaning “maps to.”)

series(n +-> (-1)**((3*n - 4)/6)/factorial(n - 1/3),x=0,4/3..,2)

x
4
3 − 1

6
x

10
3 +O

(
x5
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Once you have created a power series, you can perform arithmetic operations on that series.
We compute the Taylor expansion of 1/(1− x).

f := series(1/(1-x),x = 0)

1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +O
(
x11
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Compute the square of the series.

f ** 2

1 + 2 x+ 3 x2 + 4 x3 + 5 x4 + 6 x5 + 7 x6 + 8 x7 + 9 x8 + 10 x9 + 11 x10 +O
(
x11
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

The usual elementary functions (log, exp, trigonometric functions, and so on) are defined
for power series.

f := series(1/(1-x),x = 0)

1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +O
(
x11
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

g := log(f)

x+ 1
2 x2 + 1

3 x3 + 1
4 x4 + 1

5 x5 + 1
6 x6 + 1

7 x7+

1

8
x8 +

1

9
x9 +

1

10
x10 +

1

11
x11 +O

(
x12
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

exp(g)

1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +O
(
x11
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Here is a way to obtain numerical approximations of e from the Taylor series expansion of
exp(x). First create the desired Taylor expansion.
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f := taylor(exp(x))

1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5 +

1

720
x6 +

1

5040
x7 +

1

40320
x8 +

1

362880
x9 +

1

3628800
x10 +O

(
x11
)

Type: UnivariateTaylorSeries(Expression Integer,x,0)

Evaluate the series at the value 1.0. As you see, you get a sequence of partial sums.

eval(f,1.0)

[1.0, 2.0, 2.5, 2.6666666666666666667,

2.7083333333333333333, 2.7166666666666666667,

2.7180555555555555556, 2.718253968253968254,

2.7182787698412698413, 2.7182815255731922399, . . . ]

Type: Stream Expression Float

3.15 Derivatives

Use the Axiom function D to differentiate an expression.

To find the derivative of an expression f with respect to a variable x, enter D(f, x).

f := exp exp x

ee
x

Type: Expression Integer

D(f, x)

ex ee
x

Type: Expression Integer

An optional third argument n in D asks Axiom for the n-th derivative of f . This finds the
fourth derivative of f with respect to x.

D(f, x, 4) (
ex4 + 6 ex3 + 7 ex2 + ex

)
ee

x

Type: Expression Integer

You can also compute partial derivatives by specifying the order of differentiation.

g := sin(x**2 + y)

sin
(
y + x2

)
Type: Expression Integer

D(g, y)
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cos
(
y + x2

)
Type: Expression Integer

D(g, [y, y, x, x])

4 x2 sin
(
y + x2

)
− 2 cos

(
y + x2

)
Type: Expression Integer

Axiom can manipulate the derivatives (partial and iterated) of expressions involving formal
operators. All the dependencies must be explicit.

This returns 0 since F (so far) does not explicitly depend on x.

D(F,x)

0

Type: Polynomial Integer

Suppose that we have F a function of x, y, and z, where x and y are themselves functions
of z.

Start by declaring that F , x, and y are operators.

F := operator ’F; x := operator ’x; y := operator ’y

y

Type: BasicOperator

You can use F, x, and y in expressions.

a := F(x z, y z, z**2) + x y(z+1)

x (y (z + 1)) + F
(
x (z), y (z), z2

)
Type: Expression Integer

Differentiate formally with respect to z. The formal derivatives appearing in dadz are not
just formal symbols, but do represent the derivatives of x, y, and F.

dadz := D(a, z)

2 z F,3

(
x (z), y (z), z2

)
+ y, (z) F,2

(
x (z), y (z), z2

)
+

x, (z) F,1

(
x (z), y (z), z2

)
+ x, (y (z + 1)) y, (z + 1)

Type: Expression Integer

You can evaluate the above for particular functional values of F, x, and y. If x(z) is exp(z)
and y(z) is log(z+1), then evaluates dadz.

eval(eval(dadz, ’x, z +-> exp z), ’y, z +-> log(z+1))
(
2 z2 + 2 z

)
F,3

(
ez, log (z + 1), z2

)
+

F,2

(
ez, log (z + 1), z2

)
+

(z + 1) ez F,1

(
ez, log (z + 1), z2

)
+ z + 1


z + 1
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Type: Expression Integer

You obtain the same result by first evaluating a and then differentiating.

eval(eval(a, ’x, z +-> exp z), ’y, z +-> log(z+1))

F
(
ez, log (z + 1), z2

)
+ z + 2

Type: Expression Integer

D(%, z) 
(
2 z2 + 2 z

)
F,3

(
ez, log (z + 1), z2

)
+

F,2

(
ez, log (z + 1), z2

)
+

(z + 1) ez F,1

(
ez, log (z + 1), z2

)
+ z + 1


z + 1

Type: Expression Integer

3.16 Integration

Axiom has extensive library facilities for integration.

The first example is the integration of a fraction with denominator that factors into a
quadratic and a quartic irreducible polynomial. The usual partial fraction approach used by
most other computer algebra systems either fails or introduces expensive unneeded algebraic
numbers.

We use a factorization-free algorithm.

integrate((x**2+2*x+1)/((x+1)**6+1),x)

arctan
(
x3 + 3 x2 + 3 x+ 1

)
3

Type: Union(Expression Integer,...)

When real parameters are present, the form of the integral can depend on the signs of some
expressions.

Rather than query the user or make sign assumptions, Axiom returns all possible answers.

integrate(1/(x**2 + a),x) log
(
(x2−a)

√
−a+2 a x

x2+a

)
2
√
−a

,
arctan

(
x

√
a

a

)
√
a


Type: Union(List Expression Integer,...)

The integrate operation generally assumes that all parameters are real. The only exception
is when the integrand has complex valued quantities.

If the parameter is complex instead of real, then the notion of sign is undefined and there is
a unique answer. You can request this answer by “prepending” the word “complex” to the
command name:
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complexIntegrate(1/(x**2 + a),x)

log
(

x
√
−a+a√
−a

)
− log

(
x

√
−a−a√
−a

)
2
√
−a

Type: Expression Integer

The following two examples illustrate the limitations of table-based approaches. The two
integrands are very similar, but the answer to one of them requires the addition of two new
algebraic numbers.

This one is the easy one. The next one looks very similar but the answer is much more
complicated.

integrate(x**3 / (a+b*x)**(1/3),x)(
120 b3 x3 − 135 a b2 x2 + 162 a2 b x− 243 a3

)
3
√
b x+ a

2

440 b4

Type: Union(Expression Integer,...)

Only an algorithmic approach is guaranteed to find what new constants must be added in
order to find a solution.

integrate(1 / (x**3 * (a+b*x)**(1/3)),x)

−2 b2 x2
√
3 log

(
3
√
a 3
√
b x+ a

2
+ 3
√
a
2 3
√
b x+ a+ a

)
+

4 b2 x2
√
3 log

(
3
√
a
2 3
√
b x+ a− a

)
+

12 b2 x2 arctan

(
2
√
3 3
√
a
2 3
√
b x+ a+ a

√
3

3 a

)
+

(12 b x− 9 a)
√
3 3
√
a

3
√
b x+ a

2


18 a2 x2

√
3 3
√
a

Type: Union(Expression Integer,...)

Some computer algebra systems use heuristics or table-driven approaches to integration.
When these systems cannot determine the answer to an integration problem, they reply
“I don’t know.” Axiom uses an algorithm which is a decision procedure for integration.
If Axiom returns the original integral that conclusively proves that an integral cannot be
expressed in terms of elementary functions.

When Axiom returns an integral sign, it has proved that no answer exists as an elementary
function.

integrate(log(1 + sqrt(a*x + b)) / x,x)

∫ x log
(√

b+%Q a+ 1
)

%Q
d%Q

Type: Union(Expression Integer,...)
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Axiom can handle complicated mixed functions much beyond what you can find in tables.

Whenever possible, Axiom tries to express the answer using the functions present in the
integrand.

integrate((sinh(1+sqrt(x+b))+2*sqrt(x+b)) / (sqrt(x+b) * (x + cosh(1+sqrt(x

+ b)))), x)

2 log

(
−2 cosh

(√
x+ b+ 1

)
− 2 x

sinh
(√

x+ b+ 1
)
− cosh

(√
x+ b+ 1

))− 2
√
x+ b

Type: Union(Expression Integer,...)

A strong structure-checking algorithm in Axiom finds hidden algebraic relationships between
functions.

integrate(tan(atan(x)/3),x)
8 log

(
3 tan

(
arctan(x)

3

)2
− 1

)
− 3 tan

(
arctan(x)

3

)2
+

18 x tan

(
arctan (x)

3

)


18

Type: Union(Expression Integer,...)

The discovery of this algebraic relationship is necessary for correct integration of this func-
tion. Here are the details:

1. If x = tan t and g = tan(t/3) then the following algebraic relation is true:

g3 − 3xg2 − 3g + x = 0

2. Integrate g using this algebraic relation; this produces:

(24g2 − 8) log(3g2 − 1) + (81x2 + 24)g2 + 72xg − 27x2 − 16

54g2 − 18

3. Rationalize the denominator, producing:

8 log(3g2 − 1)− 3g2 + 18xg + 16

18

Replace g by the initial definition g = tan(arctan(x)/3) to produce the final result.

This is an example of a mixed function where the algebraic layer is over the transcendental
one.

integrate((x + 1) / (x*(x + log x) ** (3/2)), x)

−
2
√
log (x) + x

log (x) + x

Type: Union(Expression Integer,...)

While incomplete for non-elementary functions, Axiom can handle some of them.
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integrate(exp(-x**2) * erf(x) / (erf(x)**3 - erf(x)**2 - erf(x) + 1),x)

(erf (x)− 1)
√
π log

(
erf(x)−1
erf(x)+1

)
− 2
√
π

8 erf (x)− 8

Type: Union(Expression Integer,...)

3.17 Differential Equations

The general approach used in integration also carries over to the solution of linear differential
equations.

Let’s solve some differential equations. Let y be the unknown function in terms of x.

y := operator ’y

y

Type: BasicOperator

Here we solve a third order equation with polynomial coefficients.

deq := x**3 * D(y x, x, 3) + x**2 * D(y x, x, 2) - 2 * x * D(y x, x) + 2 * y

x = 2 * x**4

x3 y,,, (x) + x2 y,, (x)− 2 x y, (x) + 2 y (x) = 2 x4

Type: Equation Expression Integer

solve(deq, y, x) [
particular = x5−10 x3+20 x2+4

15 x ,

basis =

[
2 x3 − 3 x2 + 1

x
,
x3 − 1

x
,
x3 − 3 x2 − 1

x

]]
Type: Union(Record(particular: Expression Integer,basis: List Expression

Integer),...)

Here we find all the algebraic function solutions of the equation.

deq := (x**2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x = 0(
x2 + 1

)
y,, (x) + 3 x y, (x) + y (x) = 0

Type: Equation Expression Integer

solve(deq, y, x)[
particular = 0, basis =

[
1√

x2 + 1
,
log
(√

x2 + 1− x
)

√
x2 + 1

]]
Type: Union(Record(particular: Expression Integer,basis: List Expression

Integer),...)
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Coefficients of differential equations can come from arbitrary constant fields. For example,
coefficients can contain algebraic numbers.

This example has solutions whose logarithmic derivative is an algebraic function of degree
two.

eq := 2*x**3 * D(y x,x,2) + 3*x**2 * D(y x,x) - 2 * y x

2 x3 y,, (x) + 3 x2 y, (x)− 2 y (x)

Type: Expression Integer

solve(eq,y,x).basis [
e

(
− 2√

x

)
, e

2√
x

]
Type: List Expression Integer

Here’s another differential equation to solve.

deq := D(y x, x) = y(x) / (x + y(x) * log y x)

y, (x) =
y (x)

y (x) log (y (x)) + x

Type: Equation Expression Integer

solve(deq, y, x)

y (x) log (y (x))
2 − 2 x

2 y (x)

Type: Union(Expression Integer,...)

Rather than attempting to get a closed form solution of a differential equation, you instead
might want to find an approximate solution in the form of a series.

Let’s solve a system of nonlinear first order equations and get a solution in power series. Tell
Axiom that x is also an operator.

x := operator ’x

x

Type: BasicOperator

Here are the two equations forming our system.

eq1 := D(x(t), t) = 1 + x(t)**2

x, (t) = x (t)
2
+ 1

Type: Equation Expression Integer

eq2 := D(y(t), t) = x(t) * y(t)

y, (t) = x (t) y (t)

Type: Equation Expression Integer
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We can solve the system around t = 0 with the initial conditions x(0) = 0 and y(0) = 1.
Notice that since we give the unknowns in the order [x, y], the answer is a list of two series
in the order [series for x(t), series for y(t)].

seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) = 0])[
t+

1

3
t3 +

2

15
t5 +

17

315
t7 +

62

2835
t9 +O

(
t11
)
,

1 +
1

2
t2 +

5

24
t4 +

61

720
t6 +

277

8064
t8 +

50521

3628800
t10 +O

(
t11
)]

Type: List UnivariateTaylorSeries(Expression Integer,t,0)

3.18 Solution of Equations

Axiom also has state-of-the-art algorithms for the solution of systems of polynomial equa-
tions. When the number of equations and unknowns is the same, and you have no symbolic
coefficients, you can use solve for real roots and complexSolve for complex roots. In each
case, you tell Axiom how accurate you want your result to be. All operations in the solve
family return answers in the form of a list of solution sets, where each solution set is a list
of equations.

A system of two equations involving a symbolic parameter t.

S(t) == [x**2-2*y**2 - t,x*y-y-5*x + 5]

Type: Void

Find the real roots of S(19) with rational arithmetic, correct to within 1/1020.

solve(S(19),1/10**20)[[
y = 5, x = −2451682632253093442511

295147905179352825856

]
,[

y = 5, x =
2451682632253093442511

295147905179352825856

]]
Type: List List Equation Polynomial Fraction Integer

Find the complex roots of S(19) with floating point coefficients to 20 digits accuracy in the
mantissa.

complexSolve(S(19),10.e-20)

[[y = 5.0, x = 8.3066238629180748526],

[y = 5.0, x = −8.3066238629180748526],

[y = −3.0 i, x = 1.0], [y = 3.0 i, x = 1.0]]

Type: List List Equation Polynomial Complex Float

If a system of equations has symbolic coefficients and you want a solution in radicals, try
radicalSolve.

radicalSolve(S(a),[x,y])
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[[
x = −

√
a+ 50, y = 5

]
,
[
x =
√
a+ 50, y = 5

]
,[

x = 1, y =

√
−a+ 1

2

]
,

[
x = 1, y = −

√
−a+ 1

2

]]
Type: List List Equation Expression Integer

For systems of equations with symbolic coefficients, you can apply solve, listing the variables
that you want Axiom to solve for. For polynomial equations, a solution cannot usually
be expressed solely in terms of the other variables. Instead, the solution is presented as
a “triangular” system of equations, where each polynomial has coefficients involving only
the succeeding variables. This is analogous to converting a linear system of equations to
“triangular form”.

A system of three equations in five variables.

eqns := [x**2 - y + z,x**2*z + x**4 - b*y, y**2 *z - a - b*x][
z − y + x2, x2 z − b y + x4, y2 z − b x− a

]
Type: List Polynomial Integer

Solve the system for unknowns [x, y, z], reducing the solution to triangular form.

solve(eqns,[x,y,z])[[
x = −a

b
, y = 0, z = −a2

b2

]
,[

x = z3+2 b z2+b2 z−a
b , y = z + b,

z6 + 4 b z5 + 6 b2 z4 +
(
4 b3 − 2 a

)
z3 +

(
b4 − 4 a b

)
z2 −

2 a b2 z − b3 + a2 = 0
]


Type: List List Equation Fraction Polynomial Integer
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Graphics

Figure 4.1: An Axiom Graphic

Axiom has a two- and three-dimensional drawing and rendering package that allows you to
draw, shade, color, rotate, translate, map, clip, scale and combine graphic output of Axiom
computations. The graphics interface is capable of plotting functions of one or more variables
and plotting parametric surfaces. Once the graphics figure appears in a window, move your
mouse to the window and click. A control panel appears immediately and allows you to
interactively transform the object. Refer to the original Axiom book[Jenk92] and the input
files included with Axiom for additional examples.

This is an example of Axiom’s graphics. From the Control Panel you can rescale the plot,
turn axes and units on and off and save the image, among other things. Axiom is capable of
many different kinds of graphs in both 2D and 3D settings. Points, lines, planes, wireframe,
solids, shaded solids, multiple graphs, parametric graphs, tubes, and many other kinds of
objects can be created and manipulated by the algebra and on the control panels.

This is an example of Axiom’s three-dimensional plotting. It is a graph of the complex

95
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arctangent function. The image displayed was rotated and had the “shade” and “outline”
display options set from the 3D Control Panel. The PostScript output was produced by
clicking on the save 3D Control Panel button and then clicking on the PS button.

draw((x,y) +-> real atan complex(x,y), -%pi..%pi, -%pi..%pi, colorFunction

== (x,y) +-> argument atan complex(x,y))

Figure 4.2: (x, y)→ realatancomplex(x, y),−π . . . π,−π . . . π

4.0.1 Plotting 2D graphs

There are three kinds of 2D graphs of curves defined by

1. a function y = f(x) over a finite interval of x (page 96)

2. parametric equations x = f(t) y = g(t) (page 97)

3. nonsingular solutions in a rectangular region (page 97)

PostScript output is available so that Axiom images can be printed.1

Plotting 2D graphs of 1 variable

The general format for drawing a function defined by a formula f(x) is:
draw(f(x), x = a..b, options)

where a..b defines the range of x, and where options prescribes zero or
more options as described in 4.0.1 on page 99. An example of an option is
curveColor == brightred(). An alternative format involving functions f
and g is also available.

Give the names of the functions and drop the variable name specification in the second
argument. Axiom supplies a default title if one is not given.

draw(sin(tan(x)) - tan(sin(x)), x=0..6)

1 PostScript is a trademark of Adobe Systems Incorporated, registered in the United States.
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Figure 4.3: sin(tan(x))− tan(sin(x)), x = 0 . . . 6

Plotting 2D parametric plane curves

The general format for drawing a two-dimensional plane curve defined by
parametric formulas x = f(t) and y = g(t) is:

draw(curve(f(t), g(t)), t = a..b, options)
where a..b defines the range of the independent variable t, and where options
prescribes zero or more options as described in 4.0.8 on page 115. An
example of an option is curveColor == brightred().

The second kind of two-dimensional graph are curves produced by parametric equations. Let
x = f(t) and y = g(t) be formulas of two functions f and g as the parameter t ranges over
an interval [a, b]. The function curve takes the two functions f and g as its parameters.

draw(curve(sin(t)*sin(2*t)*sin(3*t), sin(4*t)*sin(5*t)*sin(6*t)), t =

0..2*%pi)

Plotting 2D algebraic curves

The general format for drawing a non-singular solution curve given by a
polynomial of the form p(x, y) = 0 is:

draw(p(x,y) = 0, x, y, range == [a..b, c..d], options)
where the second and third arguments name the first and second independent
variables of p. A range option is always given to designate a bounding
rectangular region of the plane a ≤ x ≤ b, c ≤ y ≤ d. Zero or more additional
options as described in 4.0.1 on page 99 may be given.

A third kind of two-dimensional graph is a non-singular “solution curve” in a rectangular
region of the plane. For example:
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Figure 4.4: curve(sin(t) ∗ sin(2 ∗ t) ∗ sin(3 ∗ t), sin(4 ∗ t) ∗ sin(5 ∗ t) ∗ sin(6 ∗ t)), t = 0..2 ∗ π

p := ((x**2 + y**2 + 1) - 8*x)**2 - (8*(x**2 + y**2 + 1)-4*x-1)

y4 +
(
2 x2 − 16 x− 6

)
y2 + x4 − 16 x3 + 58 x2 − 12 x− 6

Type: Polynomial Integer

draw(p = 0, x, y, range == [-1..11, -7..7])

Figure 4.5: p = 0, x, y, range == [−1..11,−7..7]

A solution curve is a curve defined by a polynomial equation p(x, y) = 0. Non-singular
means that the curve is “smooth” in that it does not cross itself or come to a point (cusp).
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Algebraically, this means that for any point (x, y) on the curve, that is, a point such that
p(x, y) = 0, the partial derivatives ∂p

∂x (x, y) and ∂p
∂y (x, y) are not both zero. We require

that the polynomial has rational or integral coefficients.

The first argument is always expressed as an equation of the form p = 0 where p is a
polynomial.

Colors

The domain Color provides operations for manipulating colors in two-dimensional graphs.
Colors are objects of Color. Each color has a hue and a weight. Hues are represented by
integers that range from 1 to the numberOfHues(), normally 27. Weights are floats and
have the value 1.0 by default.

color (integer)

creates a color of hue integer and weight 1.0.

hue (color)

returns the hue of color as an integer.

red ()

blue(), green(), and yellow() create colors of that hue with weight 1.0.

color1 + color2 returns the color that results from additively combining the indicated color1
and color2. Color addition is not commutative: changing the order of the arguments
produces different results.

integer * color changes the weight of color by integer without affecting its hue. For example,
red() + 3 ∗ yellow() produces a color closer to yellow than to red. Color multiplication
is not associative: changing the order of grouping produces different results.

These functions can be used to change the point and curve colors for two- and three-dimen-
sional graphs. Use the pointColor option for points.

Two-Dimensional Options

The draw commands take an optional list of options, such as title shown above. Each
option is given by the syntax: name == value. Here is a list of the available options in the
order that they are described below.
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adaptive The adaptive option turns adaptive plotting on or off.
Adaptive plotting uses an algorithm that traverses a graph
and computes more points for those parts of the graph
with high curvature. The higher the curvature of a region is,
the more points the algorithm computes.
adaptive == true or adaptive == false

clip The clip option turns clipping on or off. If on,
large values are cut off according to clipPointsDefault
clip == true or clip == false or a range
clip == [-2*%pi..2*%pi,%pi..%pi]

unit The unit option sets the intervals to which the axis
units are plotted according to the indicated steps
unit == [2.0, 1.0]

curveColor The curveColor option sets the color of the graph curves
or lines to be the indicated palette and color
curveColor == bright red() (see pp 99 and 100)

range The range option sets the range of variables in a graph
to be within the ranges for solving plane algebraic curve plots
range=[-2..2,-2..1]

toScale The toScale option does plotting to scale if true
or uses the entire viewport if false. The default can
be determined using drawToScale
toScale == true or toScale == false

pointColor The pointColor option sets the color of the graph curves
or lines to be the indicated palette and color
pointColor == bright red() (see page 99)

coordinates The coordinates option indicates the coordinate system
in which the graph is plotted. This can be one of:
bipolar, bipolarCylindrical, cartesian,
conical, cylindrical, elliptic,
ellipticCylindrical, oblateSpheroidal,
parabolic, parabolicCylindrical, paraboloidal
polar, prolateSpheroidal, spherical, and
toroidal
coordinates == polar

4.0.2 Palette

Domain Palette is the domain of shades of colors: dark, dim, bright, pastel, and light,
designated by the integers 1 through 5, respectively.

Colors are normally “bright.”

shade red()

3

Type: PositiveInteger

To change the shade of a color, apply the name of a shade to it.

myFavoriteColor := dark blue()



101

[Hue: 22Weight: 1.0] from the Darkpalette

Type: Palette

The expression shade(color) returns the value of a shade of color.

shade myFavoriteColor

1

Type: PositiveInteger

The expression hue(color) returns its hue.

hue myFavoriteColor

Hue: 22Weight: 1.0

Type: Color

Palettes can be used in specifying colors in two-dimensional graphs.

draw(x**2,x=-1..1,curveColor == dark blue())

4.0.3 Two-Dimensional Control-Panel

Once you have created a viewport, move your mouse to the viewport and click with your left
mouse button to display a control-panel. The panel is displayed on the side of the viewport
closest to where you clicked. Each of the buttons which toggle on and off show the current
state of the graph.

Transformations

Object transformations are executed from the control-panel by mouse-activated potentiome-
ter windows.

Scale: To scale a graph, click on a mouse button within the Scale window in the upper left
corner of the control-panel. The axes along which the scaling is to occur are indicated
by setting the toggles above the arrow. With X On and Y On appearing, both axes are
selected and scaling is uniform. If either is not selected, for example, if X Off appears,
scaling is non-uniform.

Translate: To translate a graph, click the mouse in the Translate window in the direction
you wish the graph to move. This window is located in the upper right corner of the
control-panel. Along the top of the Translate window are two buttons for selecting
the direction of translation. Translation along both coordinate axes results when X

On and Y On appear or along one axis when one is on, for example, X On and Y Off

appear.

Messages

The window directly below the transformation potentiometer windows is used to display
system messages relating to the viewport and the control-panel. The following format is
displayed:
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Figure 4.6: Two-dimensional control-panel.

[scaleX, scaleY] >graph< [translateX, translateY]

The two values to the left show the scale factor along the X and Y coordinate axes. The
two values to the right show the distance of translation from the center in the X and Y

directions. The number in the center shows which graph in the viewport this data pertains
to. When multiple graphs exist in the same viewport, the graph must be selected (see
“Multiple Graphs,” below) in order for its transformation data to be shown, otherwise the
number is 1.
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Multiple Graphs

The Graphs window contains buttons that allow the placement of two-dimensional graphs
into one of nine available slots in any other two-dimensional viewport. In the center of the
window are numeral buttons from one to nine that show whether a graph is displayed in the
viewport. Below each number button is a button showing whether a graph that is present is
selected for application of some transformation. When the caret symbol is displayed, then
the graph in that slot will be manipulated. Initially, the graph for which the viewport is
created occupies the first slot, is displayed, and is selected.

Clear: The Clear button deselects every viewport graph slot. A graph slot is reselected by
selecting the button below its number.

Query: The Query button is used to display the scale and translate data for the indicated
graph. When this button is selected the message “Click on the graph to query” ap-
pears. Select a slot number button from the Graphs window. The scaling factor and
translation offset of the graph are then displayed in the message window.

Pick: The Pick button is used to select a graph to be placed or dropped into the indicated
viewport. When this button is selected, the message “Click on the graph to pick”
appears. Click on the slot with the graph number of the desired graph. The graph
information is held waiting for you to execute a Drop in some other graph.

Drop: Once a graph has been picked up using the Pick button, the Drop button places
it into a new viewport slot. The message “Click on the graph to drop” appears in
the message window when the Drop button is selected. By selecting one of the slot
number buttons in the Graphs window, the graph currently being held is dropped
into this slot and displayed.

Buttons

Axes turns the coordinate axes on or off.

Units turns the units along the x and y axis on or off.

Box encloses the area of the viewport graph in a bounding box, or removes the box if already
enclosed.

Pts turns on or off the display of points.

Lines turns on or off the display of lines connecting points.

PS writes the current viewport contents to a file axiom2d.ps or to a name specified in the
user’s .Xdefaults file. The file is placed in the directory from which Axiom or the
viewalone program was invoked.

Reset resets the object transformation characteristics and attributes back to their initial
states.

Hide makes the control-panel disappear.

Quit queries whether the current viewport session should be terminated.



104 CHAPTER 4. GRAPHICS

4.0.4 Operations for Two-Dimensional Graphics

Here is a summary of useful Axiom operations for two-dimensional graphics. Each operation
name is followed by a list of arguments. Each argument is written as a variable informally
named according to the type of the argument (for example, integer). If appropriate, a default
value for an argument is given in parentheses immediately following the name.

adaptive ([boolean(true)])

sets or indicates whether graphs are plotted according to the adaptive refinement al-
gorithm.

axesColorDefault ([color(dark blue())])

sets or indicates the default color of the axes in a two-dimensional graph viewport.

clipPointsDefault ([boolean(false)])

sets or indicates whether point clipping is to be applied as the default for graph plots.

drawToScale ([boolean(false)])

sets or indicates whether the plot of a graph is “to scale” or uses the entire viewport
space as the default.

lineColorDefault ([color(pastel yellow())])

sets or indicates the default color of the lines or curves in a two-dimensional graph
viewport.

maxPoints ([integer(500)])

sets or indicates the default maximum number of possible points to be used when
constructing a two-dimensional graph.

minPoints ([integer(21)])

sets or indicates the default minimum number of possible points to be used when
constructing a two-dimensional graph.

pointColorDefault ([color(bright red())])

sets or indicates the default color of the points in a two-dimensional graph viewport.

pointSizeDefault ([integer(5)])

sets or indicates the default size of the dot used to plot points in a two-dimensional
graph.

screenResolution ([integer(600)])

sets or indicates the default screen resolution constant used in setting the computation
limit of adaptively generated curve plots.

unitsColorDefault ([color(dim green())])

sets or indicates the default color of the unit labels in a two-dimensional graph viewport.

viewDefaults ()

resets the default settings for the following attributes: point color, line color, axes color,
units color, point size, viewport upper left-hand corner position, and the viewport size.

viewPosDefault ([list([100,100])])

sets or indicates the default position of the upper left-hand corner of a two-dimension-
al viewport, relative to the display root window. The upper left-hand corner of the
display is considered to be at the (0, 0) position.

viewSizeDefault ([list([200,200])])

sets or indicates the default size in which two dimensional viewport windows are shown.
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It is defined by a width and then a height.

viewWriteAvailable ([list(["pixmap","bitmap", "postscript", "image"])])

indicates the possible file types that can be created with the write function.

viewWriteDefault ([list([])])

sets or indicates the default types of files, in addition to the data file, that are created
when a write function is executed on a viewport.

units (viewport, integer(1), string("off"))

turns the units on or off for the graph with index integer.

axes (viewport, integer(1), string("on"))

turns the axes on or off for the graph with index integer.

close (viewport)

closes viewport.

connect (viewport, integer(1), string("on"))

declares whether lines connecting the points are displayed or not.

controlPanel (viewport, string("off"))

declares whether the two-dimensional control-panel is automatically displayed or not.

graphs (viewport)

returns a list describing the state of each graph. If the graph state is not being used
this is shown by "undefined", otherwise a description of the graph’s contents is shown.

graphStates (viewport)

displays a list of all the graph states available for viewport, giving the values for every
property.

key (viewport)

returns the process ID number for viewport.

move (viewport, integerx(viewPosDefault), integery(viewPosDefault))

moves viewport on the screen so that the upper left-hand corner of viewport is at the
position (x,y).

options (viewport)

returns a list of all the DrawOptions used by viewport.

points (viewport, integer(1), string("on"))

specifies whether the graph points for graph integer are to be displayed or not.

region (viewport, integer(1), string("off"))

declares whether graph integer is or is not to be displayed with a bounding rectangle.

reset (viewport)

resets all the properties of viewport.

resize (viewport, integerwidth,integerheight)

resizes viewport with a new width and height.

scale (viewport, integern(1), integerx(0.9), integery(0.9))

scales values for the x and y coordinates of graph n.

show (viewport, integern(1), string("on"))

indicates if graph n is shown or not.

title (viewport, string("Axiom 2D"))

designates the title for viewport.
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translate (viewport, integern(1), floatx(0.0), floaty(0.0))

causes graph n to be moved x and y units in the respective directions.

write (viewport, stringdirectory, [strings])

if no third argument is given, writes the data file onto the directory with extension
data. The third argument can be a single string or a list of strings with some or all
the entries "pixmap", "bitmap", "postscript", and "image".

4.0.5 Building Two-Dimensional Graphs Manually

In this section we demonstrate how to create two-dimensional graphs from lists of points and
give an example showing how to read the lists of points from a file.

Creating a Two-Dimensional Viewport from a List of Points

Axiom creates lists of points in a two-dimensional viewport by utilizing the GraphImage and
TwoDimensionalViewport domains. The makeGraphImage function takes a list of lists
of points parameter, a list of colors for each point in the graph, a list of colors for each line
in the graph, and a list of sizes for each point in the graph.

The following expressions create a list of lists of points which will be read by Axiom and
made into a two-dimensional viewport.

p1 := point [1,1]$(Point DFLOAT)

[1.0, 1.0]

Type: Point DoubleFloat

p2 := point [0,1]$(Point DFLOAT)

[0.0, 1.0]

Type: Point DoubleFloat

p3 := point [0,0]$(Point DFLOAT)

[0.0, 0.0]

Type: Point DoubleFloat

p4 := point [1,0]$(Point DFLOAT)

[1.0, 0.0]

Type: Point DoubleFloat

p5 := point [1,.5]$(Point DFLOAT)

[1.0, 0.5]

Type: Point DoubleFloat

p6 := point [.5,0]$(Point DFLOAT)

[0.5, 0.0]

Type: Point DoubleFloat
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p7 := point [0,0.5]$(Point DFLOAT)

[0.0, 0.5]

Type: Point DoubleFloat

p8 := point [.5,1]$(Point DFLOAT)

[0.5, 1.0]

Type: Point DoubleFloat

p9 := point [.25,.25]$(Point DFLOAT)

[0.25, 0.25]

Type: Point DoubleFloat

p10 := point [.25,.75]$(Point DFLOAT)

[0.25, 0.75]

Type: Point DoubleFloat

p11 := point [.75,.75]$(Point DFLOAT)

[0.75, 0.75]

Type: Point DoubleFloat

p12 := point [.75,.25]$(Point DFLOAT)

[0.75, 0.25]

Type: Point DoubleFloat

Finally, here is the list.

llp := [ [p1,p2], [p2,p3], [p3,p4], [p4,p1], [p5,p6], [p6,p7], [p7,p8],

[p8,p5], [p9,p10], [p10,p11], [p11,p12], [p12,p9] ]

[[[1.0, 1.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 0.0]], [[0.0, 0.0], [1.0, 0.0]],

[[1.0, 0.0], [1.0, 1.0]], [[1.0, 0.5], [0.5, 0.0]], [[0.5, 0.0], [0.0, 0.5]],

[[0.0, 0.5], [0.5, 1.0]], [[0.5, 1.0], [1.0, 0.5]], [[0.25, 0.25], [0.25, 0.75]],

[[0.25, 0.75], [0.75, 0.75]], [[0.75, 0.75], [0.75, 0.25]], [[0.75, 0.25], [0.25, 0.25]]]

Type: List List Point DoubleFloat

Now we set the point sizes for all components of the graph.

size1 := 6::PositiveInteger

6

Type: PositiveInteger

size2 := 8::PositiveInteger

8
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Type: PositiveInteger

size3 := 10::PositiveInteger

lsize := [size1, size1, size1, size1, size2, size2, size2, size2, size3,

size3, size3, size3]

[6, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10]

Type: List PositiveInteger

Here are the colors for the points.

pc1 := pastel red()

[Hue: 1Weight: 1.0] from the Pastelpalette

Type: Palette

pc2 := dim green()

[Hue: 14Weight: 1.0] from the Dimpalette

Type: Palette

pc3 := pastel yellow()

[Hue: 11Weight: 1.0] from the Pastelpalette

Type: Palette

lpc := [pc1, pc1, pc1, pc1, pc2, pc2, pc2, pc2, pc3, pc3, pc3, pc3]

[[Hue: 1Weight: 1.0] from the Pastelpalette,

[Hue: 1Weight: 1.0] from the Pastelpalette,

[Hue: 1Weight: 1.0] from the Pastelpalette,

[Hue: 1Weight: 1.0] from the Pastelpalette,

[Hue: 14Weight: 1.0] from the Dimpalette,

[Hue: 14Weight: 1.0] from the Dimpalette,

[Hue: 14Weight: 1.0] from the Dimpalette,

[Hue: 14Weight: 1.0] from the Dimpalette,

[Hue: 11Weight: 1.0] from the Pastelpalette,

[Hue: 11Weight: 1.0] from the Pastelpalette,

[Hue: 11Weight: 1.0] from the Pastelpalette,

[Hue: 11Weight: 1.0] from the Pastelpalette]

Type: List Palette

Here are the colors for the lines.

lc := [pastel blue(), light yellow(), dim green(), bright red(), light

green(), dim yellow(), bright blue(), dark red(), pastel red(), light

blue(), dim green(), light yellow()]
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[[Hue: 22Weight: 1.0] from the Pastelpalette,

[Hue: 11Weight: 1.0] from the Lightpalette,

[Hue: 14Weight: 1.0] from the Dimpalette,

[Hue: 1Weight: 1.0] from the Brightpalette,

[Hue: 14Weight: 1.0] from the Lightpalette,

[Hue: 11Weight: 1.0] from the Dimpalette,

[Hue: 22Weight: 1.0] from the Brightpalette,

[Hue: 1Weight: 1.0] from the Darkpalette,

[Hue: 1Weight: 1.0] from the Pastelpalette,

[Hue: 22Weight: 1.0] from the Lightpalette,

[Hue: 14Weight: 1.0] from the Dimpalette,

[Hue: 11Weight: 1.0] from the Lightpalette]

Type: List Palette

Now the GraphImage is created according to the component specifications indicated above.

g := makeGraphImage(llp,lpc,lc,lsize)$GRIMAGE

The makeViewport2D function now creates a TwoDimensionalViewport for this graph
according to the list of options specified within the brackets.

makeViewport2D(g,[title("Lines")])$VIEW2D

Figure 4.7: The Hand Constructed Line Graph

This example demonstrates the use of the GraphImage functions component and append-
Point in adding points to an empty GraphImage.
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g := graphImage()$GRIMAGE

Graph with 0point lists

Type: GraphImage

p1 := point [0,0]$(Point DFLOAT)

[0.0, 0.0]

Type: Point DoubleFloat

p2 := point [.25,.25]$(Point DFLOAT)

[0.25, 0.25]

Type: Point DoubleFloat

p3 := point [.5,.5]$(Point DFLOAT)

[0.5, 0.5]

Type: Point DoubleFloat

p4 := point [.75,.75]$(Point DFLOAT)

[0.75, 0.75]

Type: Point DoubleFloat

p5 := point [1,1]$(Point DFLOAT)

[1.0, 1.0]

Type: Point DoubleFloat

component(g,p1)$GRIMAGE

Type: Void

component(g,p2)$GRIMAGE

Type: Void

appendPoint(g,p3)$GRIMAGE

Type: Void

appendPoint(g,p4)$GRIMAGE

Type: Void

appendPoint(g,p5)$GRIMAGE

Type: Void

g1 := makeGraphImage(g)$GRIMAGE

makeViewport2D(g1,[title("Graph Points")])$VIEW2D

A list of points can also be made into a GraphImage by using the operation coerce. It is
equivalent to adding each point to g2 using component.
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Figure 4.8: Graph Points

g2 := coerce([ [p1],[p2],[p3],[p4],[p5] ])$GRIMAGE

Now, create an empty TwoDimensionalViewport.

v := viewport2D()$VIEW2D

options(v,[title("Just Points")])$VIEW2D

Place the graph into the viewport.

putGraph(v,g2,1)$VIEW2D

Take a look.

makeViewport2D(v)$VIEW2D

Figure 4.9: Just Points

Creating a Two-Dimensional Viewport of a List of Points from a File

The following three functions read a list of points from a file and then draw the points and
the connecting lines. The points are stored in the file in readable form as floating point
numbers (specifically, DoubleFloat values) as an alternating stream of x- and y-values. For
example,

0.0 0.0 1.0 1.0 2.0 4.0

3.0 9.0 4.0 16.0 5.0 25.0
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drawPoints(lp:List Point DoubleFloat):VIEW2D ==

g := graphImage()$GRIMAGE

for p in lp repeat

component(g,p,pointColorDefault(),lineColorDefault(),

pointSizeDefault())

gi := makeGraphImage(g)$GRIMAGE

makeViewport2D(gi,[title("Points")])$VIEW2D

drawLines(lp:List Point DoubleFloat):VIEW2D ==

g := graphImage()$GRIMAGE

component(g, lp, pointColorDefault(), lineColorDefault(),

pointSizeDefault())$GRIMAGE

gi := makeGraphImage(g)$GRIMAGE

makeViewport2D(gi,[title("Points")])$VIEW2D

plotData2D(name, title) ==

f:File(DFLOAT) := open(name,"input")

lp:LIST(Point DFLOAT) := empty()

while ((x := readIfCan!(f)) case DFLOAT) repeat

y : DFLOAT := read!(f)

lp := cons(point [x,y]$(Point DFLOAT), lp)

lp

close!(f)

drawPoints(lp)

drawLines(lp)

This command will actually create the viewport and the graph if the point data is in the file
”file.data”.

plotData2D("file.data", "2D Data Plot")

4.0.6 Appending a Graph to a Viewport Window Containing a
Graph

This section demonstrates how to append a two-dimensional graph to a viewport already con-
taining other graphs. The default draw command places a graph into the first GraphImage
slot position of the TwoDimensionalViewport.

We createa a graph in the first slot of a viewport.

v1 := draw(sin(x),x=0..2*%pi)

Then we create a second graph.

v2 := draw(cos(x),x=0..2*%pi, curveColor==light red())

The operation getGraph retrieves the GraphImage g1 from the first slot position in the
viewport v1.

g1 := getGraph(v1,1)

Now putGraph places g1 into the the second slot position of v2.

putGraph(v2,g1,2)

Display the new TwoDimensionalViewport containing both graphs.



113

makeViewport2D(v2)

Figure 4.10: Two graphs on one viewport

In general you can plot up to 9 graphs on the 2D viewport. Each graph can be manipulated
separately using the 2D control panel.

The Pick and Drop buttons on the 2D control panel work like cut and paste mechanisms
in a windowing environment (except that they don’t use the clipboard). So it is possible to
pick one graph and drop it on a different graph.

4.0.7 Plotting 3D Graphs

There are 3 kinds of three dimensional graphs you can generate:

1. surfaces defined by a function of two real variables (page 113)

2. space curves and tubes defined by parametric equations (page 114)

3. surfaces defined by parametric equations (page 114)

Plotting 3D functions of 2 variables

The general format for drawing a surface defined by a formula f(x, y) of two
variables x and y is:

draw(f(x,y), x = a..b, y = c..d, options)
where a..b and c..d define the range of x and y, and where options prescribes
zero or more options as described in 4.0.8 on page 115. An example of
an option is title == ”TitleofGraph”. An alternative format involving a
function f is also available.

The simplest way to plot a function of two variables is to use a formula. With formulas you
always precede the range specifications with the variable name and an = sign.

draw(cos(x*y),x=-3..3,y=-3..3)
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Figure 4.11: cos(x ∗ y), x = −3..3, y = −3..3

Plotting 3D parametric space curves

The general format for drawing a three-dimensional space curve defined by
parametric formulas x = f(t), y = g(t), and z = h(t) is:

draw(curve(f(t),g(t),h(t)), t = a..b, options)
where a..b defines the range of the independent variable t, and where options
prescribes zero or more options as described in 4.0.8 on page 115. An
example of an option is title == ”TitleofGraph”. An alternative format
involving functions f , g and h is also available.

If you use explicit formulas to draw a space curve, always precede the range specification
with the variable name and an = sign.

draw(curve(5*cos(t), 5*sin(t),t), t=-12..12)

Plotting 3D parametric surfaces

The general format for drawing a three-dimensional graph defined by para-
metric formulas x = f(u, v), y = g(u, v), and z = h(u, v) is:
draw(surface(f(u,v),g(u,v),h(u,v)), u = a..b, v = c..d, options)
where a..b and c..d define the range of the independent variables u and v,
and where options prescribes zero or more options as described in 4.0.8
on page 115. An example of an option is title == ”TitleofGraph”. An
alternative format involving functions f , g and h is also available.

This example draws a graph of a surface plotted using the parabolic cylindrical coordinate
system option. The values of the functions supplied to surface are interpreted in coordinates
as given by a coordinates option, here as parabolic cylindrical coordinates.



115

Figure 4.12: curve(5 ∗ cos(t), 5 ∗ sin(t), t), t = −12..12

draw(surface(u*cos(v), u*sin(v), v*cos(u)), u=-4..4, v=0..%pi, coordinates==

parabolicCylindrical)

Figure 4.13: surface(u ∗ cos(v), u ∗ sin(v), v ∗ cos(u)), u = −4..4, v = 0..π

4.0.8 Three-Dimensional Options

The draw commands optionally take an optional list of options such as coordinates as
shown in the last example. Each option is given by the syntax: name == value. Here is a
list of the available options in the order that they are described below:
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title The title option gives a title to the graph
title == "Title of Graph"

coordinates The coordinates option indicates the coordinate system
in which the graph is plotted. This can be one of:
bipolar, bipolarCylindrical, cartesian,
conical, cylindrical, elliptic,
ellipticCylindrical, oblateSpheroidal,
parabolic, parabolicCylindrical, paraboloidal
polar, prolateSpheroidal, spherical, and
toroidal
coordinates == polar

var1Steps The var1Steps option specifies the number of intervals
to divide a surface plot for the first parameter
var1Steps == 30

var2Steps The var1Steps option specifies the number of intervals
to divide a surface plot for the second parameter
var2Steps == 30

style The style determines which of four rendering algorithms
is used for the graph. The choices are wireMesh,
solid, shade, smooth
style == "smooth"

colorFunction The colorFunction names a function that will be called
to determine the color of each point. If we have the function
color2(u,v) == u**2 - v**2 we can call it with
colorFunction == color2

tubeRadius The tubeRadius option specifies the radius of the tube
that encircles the specified space curve.
tubeRadius == .3

tubePoints The tubePoints option specifies the number of vertices
defining the polygon that is used to create a tube around the
specified space curve. The larger this number is the more
cylindrical the tube becomes.
tubePoints == 3

space The space option lets you build multiple graphs in
three space. To use this option, first create an empty
three-space object calling create3Space as in:
s:=create3Space()$(ThreeSpace SF)

and then use the space option thereafter.
space == s

4.0.9 Three-Dimensional Control-Panel

Once you have created a viewport, move your mouse to the viewport and click with your
left mouse button. This displays a control-panel on the side of the viewport that is closest
to where you clicked.
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Figure 4.14: Three-dimensional control-panel.

Transformations

We recommend you first select the Bounds button while executing transformations since
the bounding box displayed indicates the object’s position as it changes.

Rotate: A rotation transformation occurs by clicking the mouse within the Rotate window
in the upper left corner of the control-panel. The rotation is computed in spherical
coordinates, using the horizontal mouse position to increment or decrement the value
of the longitudinal angle θ within the range of 0 to 2π and the vertical mouse position
to increment or decrement the value of the latitudinal angle ϕ within the range of -π
to π. The active mode of rotation is displayed in green on a color monitor or in clear
text on a black and white monitor, while the inactive mode is displayed in red for color
display or a mottled pattern for black and white.

origin: The origin button indicates that the rotation is to occur with respect to the
origin of the viewing space, that is indicated by the axes.

object: The object button indicates that the rotation is to occur with respect to the
center of volume of the object, independent of the axes’ origin position.

Scale: A scaling transformation occurs by clicking the mouse within the Scale window in
the upper center of the control-panel, containing a zoom arrow. The axes along which
the scaling is to occur are indicated by selecting the appropriate button above the
zoom arrow window. The selected axes are displayed in green on a color monitor or
in clear text on a black and white monitor, while the unselected axes are displayed in
red for a color display or a mottled pattern for black and white.

uniform: Uniform scaling along the x, y and z axes occurs when all the axes buttons
are selected.

non-uniform: If any of the axes buttons are not selected, non-uniform scaling occurs,
that is, scaling occurs only in the direction of the axes that are selected.

Translate: Translation occurs by indicating with the mouse in the Translate window the
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direction you want the graph to move. This window is located in the upper right corner
of the control-panel and contains a potentiometer with crossed arrows pointing up,
down, left and right. Along the top of the Translate window are three buttons (XY,
XZ, and YZ) indicating the three orthographic projection planes. Each orientates the
group as a view into that plane. Any translation of the graph occurs only along this
plane.

Messages

The window directly below the potentiometer windows for transformations is used to display
system messages relating to the viewport, the control-panel and the current graph displaying
status.

Colormap

Directly below the message window is the colormap range indicator window. The Axiom
Colormap shows a sampling of the spectrum from which hues can be drawn to represent the
colors of a surface. The Colormap is composed of five shades for each of the hues along this
spectrum. By moving the markers above and below the Colormap, the range of hues that are
used to color the existing surface are set. The bottom marker shows the hue for the low end
of the color range and the top marker shows the hue for the upper end of the range. Setting
the bottom and top markers at the same hue results in monochromatic smooth shading of the
graph when Smooth mode is selected. At each end of the Colormap are + and - buttons.
When clicked on, these increment or decrement the top or bottom marker.

Buttons

Below the Colormap window and to the left are located various buttons that determine the
characteristics of a graph. The buttons along the bottom and right hand side all have special
meanings; the remaining buttons in the first row indicate the mode or style used to display
the graph. The second row are toggles that turn on or off a property of the graph. On a
color monitor, the property is on if green (clear text, on a monochrome monitor) and off if
red (mottled pattern, on a monochrome monitor). Here is a list of their functions.

Wire displays surface and tube plots as a wireframe image in a single color (blue) with
no hidden surfaces removed, or displays space curve plots in colors based upon their
parametric variables. This is the fastest mode for displaying a graph. This is very
useful when you want to find a good orientation of your graph.

Solid displays the graph with hidden surfaces removed, drawing each polygon beginning
with the furthest from the viewer. The edges of the polygons are displayed in the hues
specified by the range in the Colormap window.

Shade displays the graph with hidden surfaces removed and with the polygons shaded,
drawing each polygon beginning with the furthest from the viewer. Polygons are
shaded in the hues specified by the range in the Colormap window using the Phong
illumination model.

Smooth displays the graph using a renderer that computes the graph one line at a time.
The location and color of the graph at each visible point on the screen are determined
and displayed using the Phong illumination model. Smooth shading is done in one of
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two ways, depending on the range selected in the colormap window and the number
of colors available from the hardware and/or window manager. When the top and
bottom markers of the colormap range are set to different hues, the graph is rendered
by dithering between the transitions in color hue. When the top and bottom markers
of the colormap range are set to the same hue, the graph is rendered using the Phong
smooth shading model. However, if enough colors cannot be allocated for this purpose,
the renderer reverts to the color dithering method until a sufficient color supply is
available. For this reason, it may not be possible to render multiple Phong smooth
shaded graphs at the same time on some systems.

Bounds encloses the entire volume of the viewgraph within a bounding box, or removes the
box if previously selected. The region that encloses the entire volume of the viewport
graph is displayed.

Axes displays Cartesian coordinate axes of the space, or turns them off if previously selected.

Outline causes quadrilateral polygons forming the graph surface to be outlined in black
when the graph is displayed in Shade mode.

BW converts a color viewport to black and white, or vice-versa. When this button is
selected the control-panel and viewport switch to an immutable colormap composed
of a range of grey scale patterns or tiles that are used wherever shading is necessary.

Light takes you to a control-panel described below.

ViewVolume takes you to another control-panel as described below.

Save creates a menu of the possible file types that can be written using the control-panel.
The Exit button leaves the save menu. The Pixmap button writes an Axiom pixmap
of the current viewport contents. The file is called axiom3d.pixmap and is located in
the directory from which Axiom or viewalone was started. The PS button writes the
current viewport contents to PostScript output rather than to the viewport window.
By default the file is called axiom3d.ps; however, if a file name is specified in the
user’s .Xdefaults file it is used. The file is placed in the directory from which the
Axiom or viewalone session was begun. See also the write function.

Reset returns the object transformation characteristics back to their initial states.

Hide causes the control-panel for the corresponding viewport to disappear from the screen.

Quit queries whether the current viewport session should be terminated.

Light

The Light button changes the control-panel into the Lighting Control-Panel. At the top
of this panel, the three axes are shown with the same orientation as the object. A light
vector from the origin of the axes shows the current position of the light source relative to
the object. At the bottom of the panel is an Abort button that cancels any changes to the
lighting that were made, and a Return button that carries out the current set of lighting
changes on the graph.

XY: The XY lighting axes window is below the Lighting Control-Panel title and to the
left. This changes the light vector within the XY view plane.

Z: The Z lighting axis window is below the Lighting Control-Panel title and in the center.
This changes the Z location of the light vector.
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Intensity: Below the Lighting Control-Panel title and to the right is the light intensity
meter. Moving the intensity indicator down decreases the amount of light emitted
from the light source. When the indicator is at the top of the meter the light source is
emitting at 100% intensity. At the bottom of the meter the light source is emitting at
a level slightly above ambient lighting.

View Volume

The View Volume button changes the control-panel into the Viewing Volume Panel.
At the bottom of the viewing panel is an Abort button that cancels any changes to the
viewing volume that were made and a Return button that carries out the current set of
viewing changes to the graph.

Eye Reference: At the top of this panel is the Eye Reference window. It shows a planar
projection of the viewing pyramid from the eye of the viewer relative to the location of
the object. This has a bounding region represented by the rectangle on the left. Below
the object rectangle is the Hither window. By moving the slider in this window the
hither clipping plane sets the front of the view volume. As a result of this depth
clipping all points of the object closer to the eye than this hither plane are not shown.
The Eye Distance slider to the right of the Hither slider is used to change the degree
of perspective in the image.

Clip Volume: The Clip Volume window is at the bottom of the Viewing Volume
Panel. On the right is a Settings menu. In this menu are buttons to select viewing
attributes. Selecting the Perspective button computes the image using perspective
projection. The Show Region button indicates whether the clipping region of the
volume is to be drawn in the viewport and the Clipping On button shows whether
the view volume clipping is to be in effect when the image is drawn. The left side of the
Clip Volume window shows the clipping boundary of the graph. Moving the knobs
along the X, Y, and Z sliders adjusts the volume of the clipping region accordingly.

4.0.10 Operations for Three-Dimensional Graphics

Here is a summary of useful Axiom operations for three-dimensional graphics. Each operation
name is followed by a list of arguments. Each argument is written as a variable informally
named according to the type of the argument (for example, integer). If appropriate, a default
value for an argument is given in parentheses immediately following the name.

adaptive3D? ()

tests whether space curves are to be plotted according to the adaptive refinement
algorithm.

axes (viewport, string("on"))

turns the axes on and off.

close (viewport)

closes the viewport.

colorDef (viewport, color1(1), color2(27))

sets the colormap range to be from color1 to color2.

controlPanel (viewport, string("off"))

declares whether the control-panel for the viewport is to be displayed or not.
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diagonals (viewport, string("off"))

declares whether the polygon outline includes the diagonals or not.

drawStyle (viewport, style)

selects which of four drawing styles are used: "wireMesh", "solid", "shade", or
"smooth".

eyeDistance (viewport,float(500))

sets the distance of the eye from the origin of the object for use in the perspective.

key (viewport)

returns the operating system process ID number for the viewport.

lighting (viewport, floatx(-0.5), floaty(0.5), floatz(0.5))

sets the Cartesian coordinates of the light source.

modifyPointData (viewport,integer,point)

replaces the coordinates of the point with the index integer with point.

move (viewport, integerx(viewPosDefault), integery(viewPosDefault))

moves the upper left-hand corner of the viewport to screen position (integerx, integery).

options (viewport)

returns a list of all current draw options.

outlineRender (viewport, string("off"))

turns polygon outlining off or on when drawing in "shade" mode.

perspective (viewport, string("on"))

turns perspective viewing on and off.

reset (viewport)

resets the attributes of a viewport to their initial settings.

resize (viewport, integerwidth (viewSizeDefault), integerheight (viewSizeDefault))

resets the width and height values for a viewport.

rotate (viewport, numberθ(viewThetaDefapult), numberϕ(viewPhiDefault))

rotates the viewport by rotation angles for longitude (θ) and latitude (ϕ). Angles
designate radians if given as floats, or degrees if given as integers.

setAdaptive3D (boolean(true))

sets whether space curves are to be plotted according to the adaptive refinement algo-
rithm.

setMaxPoints3D (integer(1000))

sets the default maximum number of possible points to be used when constructing a
three-dimensional space curve.

setMinPoints3D (integer(49))

sets the default minimum number of possible points to be used when constructing a
three-dimensional space curve.

setScreenResolution3D (integer(49))

sets the default screen resolution constant used in setting the computation limit of
adaptively generated three-dimensional space curve plots.

showRegion (viewport, string("off"))

declares whether the bounding box of a graph is shown or not.
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subspace (viewport)

returns the space component.

subspace (viewport, subspace)

resets the space component to subspace.

title (viewport, string)

gives the viewport the title string.

translate (viewport, floatx(viewDeltaXDefault), floaty(viewDeltaYDefault))

translates the object horizontally and vertically relative to the center of the viewport.

intensity (viewport,float(1.0))

resets the intensity I of the light source, 0 ≤ I ≤ 1.

tubePointsDefault ([integer(6)])

sets or indicates the default number of vertices defining the polygon that is used to
create a tube around a space curve.

tubeRadiusDefault ([float(0.5)])

sets or indicates the default radius of the tube that encircles a space curve.

var1StepsDefault ([integer(27)])

sets or indicates the default number of increments into which the grid defining a surface
plot is subdivided with respect to the first parameter declared in the surface function.

var2StepsDefault ([integer(27)])

sets or indicates the default number of increments into which the grid defining a surface
plot is subdivided with respect to the second parameter declared in the surface function.

viewDefaults ([integerpoint, integerline, integeraxes, integerunits, floatpoint, listposition,

listsize])

resets the default settings for the point color, line color, axes color, units color, point
size, viewport upper left-hand corner position, and the viewport size.

viewDeltaXDefault ([float(0)])

resets the default horizontal offset from the center of the viewport, or returns the
current default offset if no argument is given.

viewDeltaYDefault ([float(0)])

resets the default vertical offset from the center of the viewport, or returns the current
default offset if no argument is given.

viewPhiDefault ([float(-π/4)])

resets the default latitudinal view angle, or returns the current default angle if no
argument is given. ϕ is set to this value.

viewpoint (viewport, floatx, floaty, floatz)

sets the viewing position in Cartesian coordinates.

viewpoint (viewport, floatθ, Floatϕ)

sets the viewing position in spherical coordinates.

viewpoint (viewport, Floatθ, Floatϕ, FloatscaleFactor, FloatxOffset, FloatyOffset)

sets the viewing position in spherical coordinates, the scale factor, and offsets. θ
(longitude) and ϕ (latitude) are in radians.

viewPosDefault ([list([0,0])])

sets or indicates the position of the upper left-hand corner of a two-dimensional view-
port, relative to the display root window (the upper left-hand corner of the display is
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[0, 0]).

viewSizeDefault ([list([400,400])])

sets or indicates the width and height dimensions of a viewport.

viewThetaDefault ([float(π/4)])

resets the default longitudinal view angle, or returns the current default angle if no
argument is given. When a parameter is specified, the default longitudinal view angle
θ is set to this value.

viewWriteAvailable ([list(["pixmap", "bitmap", "postscript", "image"])])

indicates the possible file types that can be created with the write function.

viewWriteDefault ([list([])])

sets or indicates the default types of files that are created in addition to the data file
when a write command is executed on a viewport.

viewScaleDefault ([float])

sets the default scaling factor, or returns the current factor if no argument is given.

write (viewport, directory, [option])

writes the file data for viewport in the directory directory. An optional third argument
specifies a file type (one of pixmap, bitmap, postscript, or image), or a list of file
types. An additional file is written for each file type listed.

scale (viewport, float(2.5))

specifies the scaling factor.

4.0.11 Customization using .Xdefaults

Both the two-dimensional and three-dimensional drawing facilities consult the .Xdefaults
file for various defaults. The list of defaults that are recognized by the graphing routines is
discussed in this section. These defaults are preceded by Axiom.3D. for three-dimensional
viewport defaults, Axiom.2D. for two-dimensional viewport defaults, or Axiom* (no dot) for
those defaults that are acceptable to either viewport type.

Axiom*buttonFont: font
This indicates which font type is used for the button text on the control-panel. Rom11

Axiom.2D.graphFont: font (2D only)
This indicates which font type is used for displaying the graph numbers and slots in
the Graphs section of the two-dimensional control-panel. Rom22

Axiom.3D.headerFont: font
This indicates which font type is used for the axes labels and potentiometer header
names on three-dimensional viewport windows. This is also used for two-dimensional
control-panels for indicating which font type is used for potentionmeter header names
and multiple graph title headers. Itl14

Axiom*inverse: switch
This indicates whether the background color is to be inverted from white to black. If
on, the graph viewports use black as the background color. If off or no declaration is
made, the graph viewports use a white background. off

Axiom.3D.lightingFont: font (3D only)
This indicates which font type is used for the x, y, and z labels of the two lighting axes
potentiometers, and for the Intensity title on the lighting control-panel. Rom10
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Axiom.2D.messageFont, Axiom.3D.messageFont: font
These indicate the font type to be used for the text in the control-panel message
window. Rom14

Axiom*monochrome: switch
This indicates whether the graph viewports are to be displayed as if the monitor is
black and white, that is, a 1 bit plane. If on is specified, the viewport display is black
and white. If off is specified, or no declaration for this default is given, the viewports
are displayed in the normal fashion for the monitor in use. off

Axiom.2D.postScript: filename
This specifies the name of the file that is generated when a 2D PostScript graph is
saved. axiom2d.ps

Axiom.3D.postScript: filename
This specifies the name of the file that is generated when a 3D PostScript graph is
saved. axiom3d.ps

Axiom*titleFont font
This indicates which font type is used for the title text and, for three-dimensional
graphs, in the lighting and viewing-volume control-panel windows. Rom14

Axiom.2D.unitFont: font (2D only)
This indicates which font type is used for displaying the unit labels on two-dimensional
viewport graphs. 6x10

Axiom.3D.volumeFont: font (3D only)
This indicates which font type is used for the x, y, and z labels of the clipping re-
gion sliders; for the Perspective, Show Region, and Clipping On buttons under
Settings, and above the windows for the Hither and Eye Distance sliders in the
Viewing Volume Panel of the three-dimensional control-panel. Rom8



Chapter 5

Using Types and Modes

In this chapter we look at the key notion of type and its generalization mode. We show
that every Axiom object has a type that determines what you can do with the object. In
particular, we explain how to use types to call specific functions from particular parts of the
library and how types and modes can be used to create new objects from old. We also look
at Record and Union types and the special type Any . Finally, we give you an idea of how
Axiom manipulates types and modes internally to resolve ambiguities.

5.1 The Basic Idea

The Axiom world deals with many kinds of objects. There are mathematical objects such
as numbers and polynomials, data structure objects such as lists and arrays, and graphics
objects such as points and graphic images. Functions are objects too.

Axiom organizes objects using the notion of domain of computation, or simply domain.
Each domain denotes a class of objects. The class of objects it denotes is usually given by
the name of the domain: Integer for the integers, Float for floating-point numbers, and
so on. The convention is that the first letter of a domain name is capitalized. Similarly,
the domain Polynomial(Integer) denotes “polynomials with integer coefficients.” Also,
Matrix(Float) denotes “matrices with floating-point entries.”

Every basic Axiom object belongs to a unique domain. The integer 3 belongs to the domain
Integer and the polynomial x + 3 belongs to the domain Polynomial(Integer). The
domain of an object is also called its type. Thus we speak of “the type Integer” and “the
type Polynomial(Integer).”

After an Axiom computation, the type is displayed toward the right-hand side of the page
(or screen).

-3

−3

Type: Integer

Here we create a rational number but it looks like the last result. The type however tells you
it is different. You cannot identify the type of an object by how Axiom displays the object.

125
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-3/1

−3

Type: Fraction Integer

When a computation produces a result of a simpler type, Axiom leaves the type unsimplified.
Thus no information is lost.

x + 3 - x

3

Type: Polynomial Integer

This seldom matters since Axiom retracts the answer to the simpler type if it is necessary.

factorial(%)

6

Type: Expression Integer

When you issue a positive number, the type PositiveInteger is printed. Surely, 3 also has
type Integer! The curious reader may now have two questions. First, is the type of an
object not unique? Second, how is PositiveInteger related to Integer?

3

3

Type: PositiveInteger

Any domain can be refined to a subdomain by a membership predicate. A predicate is a
function that, when applied to an object of the domain, returns either true or false. For
example, the domain Integer can be refined to the subdomain PositiveInteger, the set of
integers x such that x > 0, by giving the Axiom predicate x +-> x > 0. Similarly, Axiom
can define subdomains such as “the subdomain of diagonal matrices,” “the subdomain of
lists of length two,” “the subdomain of monic irreducible polynomials in x,” and so on.
Trivially, any domain is a subdomain of itself.

While an object belongs to a unique domain, it can belong to any number of subdomains.
Any subdomain of the domain of an object can be used as the type of that object. The type
of 3 is indeed both Integer and PositiveInteger as well as any other subdomain of integer
whose predicate is satisfied, such as “the prime integers,” “the odd positive integers between
3 and 17,” and so on.

5.1.1 Domain Constructors

In Axiom, domains are objects. You can create them, pass them to functions, and, as we’ll
see later, test them for certain properties.

You ask for a value of a function by applying its name to a set of arguments.

To ask for “the factorial of 7” you enter this expression to Axiom. This applies the function
factorial to the value 7 to compute the result.

factorial(7)
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5040

Type: PositiveInteger

Enter the type Polynomial (Integer) as an expression to Axiom. This looks much like a
function call as well. It is! The result is appropriately stated to be of type Domain, which
according to our usual convention, denotes the class of all domains.

Polynomial(Integer)

Polynomial Integer

Type: Domain

The most basic operation involving domains is that of building a new domain from a given
one. To create the domain of “polynomials over the integers,” Axiom applies the function
Polynomial to the domain Integer. A function like Polynomial is called a domain con-
structor or, more simply, a constructor. A domain constructor is a function that creates a
domain. An argument to a domain constructor can be another domain or, in general, an
arbitrary kind of object. Polynomial takes a single domain argument while SquareMatrix

takes a positive integer as a first argument to give the matrix dimension and a domain as a
second argument to give the type of its components.

What kinds of domains can you use as the argument to List or Polynomial or SquareMatrix?
Well, the last two are mathematical in nature. You want to be able to perform algebraic
operations like “+” and “*” on polynomials and square matrices, and operations such as
determinant on square matrices. So you want to allow polynomials of integers and poly-
nomials of square matrices with complex number coefficients and, in general, anything that
“makes sense.” At the same time, you don’t want Axiom to be able to build nonsense
domains such as “polynomials of strings!”

In contrast to algebraic structures, data structures can hold any kind of object. Operations
on lists such as insert, delete, and concat just manipulate the list itself without changing
or operating on its elements. Thus you can build List over almost any datatype, including
itself.

Create a complicated algebraic domain.

List (List (Matrix (Polynomial (Complex (Fraction (Integer))))))

List List Matrix Polynomial Complex Fraction Integer

Type: Domain

Try to create a meaningless domain.

Polynomial(String)

Polynomial String is not a valid type.

Evidently from our last example, Axiom has some mechanism that tells what a constructor
can use as an argument. This brings us to the notion of category. As domains are objects,
they too have a domain. The domain of a domain is a category. A category is simply a type
whose members are domains.

A common algebraic category is Ring, the class of all domains that are “rings.” A ring
is an algebraic structure with constants 0 and 1 and operations “+”, “-”, and “*”. These
operations are assumed “closed” with respect to the domain, meaning that they take two
objects of the domain and produce a result object also in the domain. The operations
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are understood to satisfy certain “axioms,” certain mathematical principles providing the
algebraic foundation for rings. For example, the additive inverse axiom for rings states:

Every element x has an additive inverse y such that x+ y = 0.

The prototypical example of a domain that is a ring is the integers. Keep them in mind
whenever we mention Ring.

Many algebraic domain constructors such as Complex, Polynomial, Fraction, take rings as
arguments and return rings as values. You can use the infix operator “has” to ask a domain
if it belongs to a particular category.

All numerical types are rings. Domain constructor Polynomial builds “the ring of polyno-
mials over any other ring.”

Polynomial(Integer) has Ring

true

Type: Boolean

Constructor List never produces a ring.

List(Integer) has Ring

false

Type: Boolean

The constructor Matrix(R) builds “the domain of all matrices over the ring R.” This domain
is never a ring since the operations “+”, “-”, and “*” on matrices of arbitrary shapes are
undefined.

Matrix(Integer) has Ring

false

Type: Boolean

Thus you can never build polynomials over matrices.

Polynomial(Matrix(Integer))

Polynomial Matrix Integer is not a valid type.

Use SquareMatrix(n,R) instead. For any positive integer n, it builds “the ring of n by n
matrices over R.”

Polynomial(SquareMatrix(7,Complex(Integer)))

Polynomial SquareMatrix(7,Complex Integer)

Type: Domain

Another common category is Field, the class of all fields. A field is a ring with additional
operations. For example, a field has commutative multiplication and a closed operation “/”
for the division of two elements. Integer is not a field since, for example, 3/2 does not have
an integer result. The prototypical example of a field is the rational numbers, that is, the
domain Fraction(Integer). In general, the constructor Fraction takes an IntegralDomain,
which is a ring with additional properties, as an argument and returns a field. Other domain
constructors, such as Complex, build fields only if their argument domain is a field.

The complex integers (often called the “Gaussian integers”) do not form a field.
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Complex(Integer) has Field

false

Type: Boolean

But fractions of complex integers do.

Fraction(Complex(Integer)) has Field

true

Type: Boolean

The algebraically equivalent domain of complex rational numbers is a field since domain
constructor Complex produces a field whenever its argument is a field.

Complex(Fraction(Integer)) has Field

true

Type: Boolean

The most basic category is Type. It denotes the class of all domains and subdomains. Note
carefully that Type does not denote the class of all types. The type of all categories is
Category. The type of Type itself is undefined. Domain constructor List is able to build
“lists of elements from domain D” for arbitrary D simply by requiring that D belong to
category Type.

Now, you may ask, what exactly is a category? Like domains, categories can be defined in
the Axiom language. A category is defined by three components:

1. a name (for example, Ring), used to refer to the class of domains that the category
represents;

2. a set of operations, used to refer to the operations that the domains of this class support
(for example, “+”, “-”, and “*” for rings); and

3. an optional list of other categories that this category extends.

This last component is a new idea. And it is key to the design of Axiom. Because categories
can extend one another, they form hierarchies. All categories are extensions of Type and
that Field is an extension of Ring.

The operations supported by the domains of a category are called the exports of that category
because these are the operations made available for system-wide use. The exports of a
domain of a given category are not only the ones explicitly mentioned by the category.
Since a category extends other categories, the operations of these other categories—and all
categories these other categories extend—are also exported by the domains.

For example, polynomial domains belong to PolynomialCategory. This category explicitly
mentions some twenty-nine operations on polynomials, but it extends eleven other cate-
gories (including Ring). As a result, the current system has over one hundred operations on
polynomials.

If a domain belongs to a category that extends, say, Ring, it is convenient to say that the
domain exports Ring. The name of the category thus provides a convenient shorthand for
the list of operations exported by the category. Rather than listing operations such as “+”
and “*” of Ring each time they are needed, the definition of a type simply asserts that it
exports category Ring.
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The category name, however, is more than a shorthand. The name Ring, in fact, implies that
the operations exported by rings are required to satisfy a set of “axioms” associated with
the name Ring. This subtle but important feature distinguishes Axiom from other abstract
datatype designs.

Why is it not correct to assume that some type is a ring if it exports all of the operations
of Ring? Here is why. Some languages such as APL denote the Boolean constants true

and false by the integers 1 and 0 respectively, then use “+” and “*” to denote the logical
operators or and and. But with these definitions Boolean is not a ring since the additive
inverse axiom is violated. That is, there is no inverse element a such that 1 + a = 0, or,
in the usual terms: true or a = false. This alternative definition of Boolean can be
easily and correctly implemented in Axiom, since Boolean simply does not assert that it
is of category Ring. This prevents the system from building meaningless domains such as
Polynomial(Boolean) and then wrongfully applying algorithms that presume that the ring
axioms hold.

Enough on categories. We now return to our discussion of domains.

Domains export a set of operations to make them available for system-wide use. Integer, for
example, exports the operations “+” and “=” given by the signatures “+”: (Integer,Integer)
→ Integer and “=”: (Integer,Integer) → Boolean, respectively. Each of these operations takes
two Integer arguments. The “+” operation also returns an Integer but “=” returns a
Boolean: true or false. The operations exported by a domain usually manipulate objects
of the domain—but not always.

The operations of a domain may actually take as arguments, and return as values, objects
from any domain. For example, Fraction (Integer) exports the operations “/”: (Inte-
ger,Integer) → Fraction(Integer) and characteristic: → NonNegativeInteger.

Suppose all operations of a domain take as arguments and return as values, only objects
from other domains. This kind of domain is what Axiom calls a package.

A package does not designate a class of objects at all. Rather, a package is just a collection
of operations. Actually the bulk of the Axiom library of algorithms consists of packages.
The facilities for factorization; integration; solution of linear, polynomial, and differential
equations; computation of limits; and so on, are all defined in packages. Domains needed
by algorithms can be passed to a package as arguments or used by name if they are not
“variable.” Packages are useful for defining operations that convert objects of one type to
another, particularly when these types have different parameterizations. As an example,
the package PolynomialFunction2(R,S) defines operations that convert polynomials over
a domain R to polynomials over S. To convert an object from Polynomial(Integer) to
Polynomial(Float), Axiom builds the package PolynomialFunctions2(Integer,Float)

in order to create the required conversion function. (This happens “behind the scenes” for
you.)

Axiom categories, domains and packages and all their contained functions are written in
the Axiom programming language, called the Spad language, and have been compiled into
machine code. This is what comprises the Axiom library. We will show you how to use these
domains and their functions and how to write your own functions.

There is a second language, called Aldor[Watt03] that is compatible with the Spad lan-
guage. They both can create programs than can execute under Axiom. Aldor is a standalone
version of the Spad language and contains some additional syntax to support standalone
programs. In addition, Aldor includes some new ideas such as post-facto domain extensions.
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5.2 Writing Types and Modes

We have already seen in the last section several examples of types. Most of these examples
had either no arguments (for example, Integer) or one argument (for example, Polynomial
(Integer)). In this section we give details about writing arbitrary types. We then de-
fine modes and discuss how to write them. We conclude the section with a discussion on
constructor abbreviations.

When might you need to write a type or mode? You need to do so when you declare variables.

a : PositiveInteger

Type: Void

You need to do so when you declare functions

f : Integer -> String

Type: Void

You need to do so when you convert an object from one type to another.

factor(2 :: Complex(Integer))

−i (1 + i)
2

Type: Factored Complex Integer

(2 = 3)$Integer

false

Type: Boolean

You need to do so when you give computation target type information.

(2 = 3)@Boolean

false

Type: Boolean

5.2.1 Types with No Arguments

A constructor with no arguments can be written either with or without trailing opening and
closing parentheses “()”.

Boolean() is the same as Boolean
Integer() is the same as Integer
String() is the same as String
Void() is the same as Void

It is customary to omit the parentheses.
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5.2.2 Types with One Argument

A constructor with one argument can frequently be written with no parentheses. Types nest
from right to left so that Complex Fraction Polynomial Integer is the same as Complex
(Fraction (Polynomial (Integer))). You need to use parentheses to force the appli-
cation of a constructor to the correct argument, but you need not use any more than is
necessary to remove ambiguities.

Here are some guidelines for using parentheses (they are possibly slightly more restrictive
than they need to be).

If the argument is an expression like 2+3 then you must enclose the argument in parentheses.

e : PrimeField(2 + 3)

Type: Void

If the type is to be used with package calling then you must enclose the argument in paren-
theses.

content(2)$Polynomial(Integer)

2

Type: Integer

Alternatively, you can write the type without parentheses then enclose the whole type ex-
pression with parentheses.

content(2)$(Polynomial Complex Fraction Integer)

2

Type: Complex Fraction Integer

If you supply computation target type information then you should enclose the argument in
parentheses.

(2/3)@Fraction(Polynomial(Integer))

2

3

Type: Fraction Polynomial Integer

If the type itself has parentheses around it and we are not in the case of the first example
above, then the parentheses can usually be omitted.

(2/3)@Fraction(Polynomial Integer)

2

3

Type: Fraction Polynomial Integer

If the type is used in a declaration and the argument is a single-word type, integer or symbol,
then the parentheses can usually be omitted.

(d,f,g) : Complex Polynomial Integer

Type: Void
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5.2.3 Types with More Than One Argument

If a constructor has more than one argument, you must use parentheses. Some examples are

UnivariatePolynomial(x, Float)

MultivariatePolynomial([z,w,r], Complex Float)

SquareMatrix(3, Integer)

FactoredFunctions2(Integer,Fraction Integer)

5.2.4 Modes

A mode is a type that possibly is a question mark (?) or contains one in an argument posi-
tion. For example, the following are all modes.

?

Polynomial ?

Matrix Polynomial ?

SquareMatrix(3,?)

Integer

OneDimensionalArray(Float)

As is evident from these examples, a mode is a type with a part that is not specified (indicated
by a question mark). Only one “?” is allowed per mode and it must appear in the most
deeply nested argument that is a type. Thus ?(Integer), Matrix(? (Polynomial)),
SquareMatrix(?, Integer) (it requires a numeric argument) and SquareMatrix(?, ?)

are all invalid. The question mark must take the place of a domain, not data. This rules
out, for example, the two SquareMatrix expressions.

Modes can be used for declarations and conversions. However, you cannot use a mode for
package calling or giving target type information.

5.2.5 Abbreviations

Every constructor has an abbreviation that you can freely substitute for the constructor
name. In some cases, the abbreviation is nothing more than the capitalized version of the
constructor name.

Aside from allowing types to be written more concisely, abbreviations are
used by Axiom to name various system files for constructors (such as library
filenames, test input files and example files). Here are some common abbre-
viations.

COMPLEX abbreviates Complex DFLOAT abbreviates DoubleFloat

EXPR abbreviates Expression FLOAT abbreviates Float

FRAC abbreviates Fraction INT abbreviates Integer

MATRIX abbreviates Matrix NNI abbreviates NonNegativeInteger

PI abbreviates PositiveInteger POLY abbreviates Polynomial

STRING abbreviates String UP abbreviates UnivariatePolynomial

You can combine both full constructor names and abbreviations in a type expression. Here
are some types using abbreviations.
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POLY INT is the same as Polynomial(INT)

POLY(Integer) is the same as Polynomial(Integer)

POLY(Integer) is the same as Polynomial(INT)

FRAC(COMPLEX(INT)) is the same as Fraction Complex Integer

FRAC(COMPLEX(INT)) is the same as FRAC(Complex Integer)

There are several ways of finding the names of constructors and their abbreviations. For a
specific constructor, use )abbreviation query. You can also use the )what system com-
mand to see the names and abbreviations of constructors.

)abbreviation query can be abbreviated (no pun intended) to )abb q.

)abb q Integer

INT abbreviates domain Integer

The )abbreviation query command lists the constructor name if you give the abbreviation.
Issue )abb q if you want to see the names and abbreviations of all Axiom constructors.

)abb q DMP

DMP abbreviates domain DistributedMultivariatePolynomial

Issue this to see all packages whose names contain the string “ode”.

)what packages ode

---------------------- Packages -----------------------

Packages with names matching patterns:

ode

EXPRODE ExpressionSpaceODESolver

FCPAK1 FortranCodePackage1

GRAY GrayCode

LODEEF ElementaryFunctionLODESolver

NODE1 NonLinearFirstOrderODESolver

ODECONST ConstantLODE

ODEEF ElementaryFunctionODESolver

ODEINT ODEIntegration

ODEPAL PureAlgebraicLODE

ODERAT RationalLODE

ODERED ReduceLODE

ODESYS SystemODESolver

ODETOOLS ODETools

UTSODE UnivariateTaylorSeriesODESolver

UTSODETL UTSodetools

5.3 Declarations

A declaration is an expression used to restrict the type of values that can be assigned to
variables. A colon “:” is always used after a variable or list of variables to be declared.

For a single variable, the syntax for declaration is
variableName : typeOrMode

For multiple variables, the syntax is
(variableName1, variableName2, ...variableNameN): typeOrMode
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You can always combine a declaration with an assignment. When you do, it is equivalent to
first giving a declaration statement, then giving an assignment.

This declares one variable to have a type.

a : Integer

Type: Void

This declares several variables to have a type.

(b,c) : Integer

Type: Void

a, b and c can only hold integer values.

a := 45

45

Type: Integer

If a value cannot be converted to a declared type, an error message is displayed.

b := 4/5

Cannot convert right-hand side of assignment

4

-

5

to an object of the type Integer of the left-hand side.

This declares a variable with a mode.

n : Complex ?

Type: Void

This declares several variables with a mode.

(p,q,r) : Matrix Polynomial ?

Type: Void

This complex object has integer real and imaginary parts.

n := -36 + 9 * %i

−36 + 9 i

Type: Complex Integer

This complex object has fractional symbolic real and imaginary parts.

n := complex(4/(x + y),y/x)

4

y + x
+

y

x
i

Type: Complex Fraction Polynomial Integer

This matrix has entries that are polynomials with integer coefficients.
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p := [ [1,2],[3,4],[5,6] ]  1 2
3 4
5 6


Type: Matrix Polynomial Integer

This matrix has a single entry that is a polynomial with rational number coefficients.

q := [ [x - 2/3] ] [
x− 2

3

]
Type: Matrix Polynomial Fraction Integer

This matrix has entries that are polynomials with complex integer coefficients.

r := [ [1-%i*x,7*y+4*%i] ] [
−i x+ 1 7 y + 4 i

]
Type: Matrix Polynomial Complex Integer

Note the difference between this and the next example. This is a complex object with
polynomial real and imaginary parts.

f : COMPLEX POLY ? := (x + y*%i)**2

−y2 + x2 + 2 x y i

Type: Complex Polynomial Integer

This is a polynomial with complex integer coefficients. The objects are convertible from one
to the other.

g : POLY COMPLEX ? := (x + y*%i)**2

−y2 + 2 i x y + x2

Type: Polynomial Complex Integer

5.4 Records

A Record is an object composed of one or more other objects, each of which is referenced
with a selector. Components can all belong to the same type or each can have a different
type.

The syntax for writing a Record type is
Record(selector1:type1, selector2:type2, ..., selectorN:typeN)

You must be careful if a selector has the same name as a variable in the
workspace. If this occurs, precede the selector name by a single quote.

Record components are implicitly ordered. All the components of a record can be set at
once by assigning the record a bracketed tuple of values of the proper length. For example:

r : Record(a:Integer, b: String) := [1, "two"]
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[a = 1, b = "two"]

Type: Record(a: Integer,b: String)

To access a component of a record r, write the name r, followed by a period, followed by a
selector.

The object returned by this computation is a record with two components: a quotient part
and a remainder part.

u := divide(5,2)

[quotient = 2, remainder = 1]

Type: Record(quotient: Integer,remainder: Integer)

This is the quotient part.

u.quotient

2

Type: PositiveInteger

This is the remainder part.

u.remainder

1

Type: PositiveInteger

You can use selector expressions on the left-hand side of an assignment to change destruc-
tively the components of a record.

u.quotient := 8978

8978

Type: PositiveInteger

The selected component quotient has the value 8978, which is what is returned by the
assignment. Check that the value of u was modified.

u

[quotient = 8978, remainder = 1]

Type: Record(quotient: Integer,remainder: Integer)

Selectors are evaluated. Thus you can use variables that evaluate to selectors instead of the
selectors themselves.

s := ’quotient

quotient

Type: Variable quotient

Be careful! A selector could have the same name as a variable in the workspace. If this
occurs, precede the selector name by a single quote, as in u.′quotient.

divide(5,2).s
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2

Type: PositiveInteger

Here we declare that the value of bd has two components: a string, to be accessed via name,
and an integer, to be accessed via birthdayMonth.

bd : Record(name : String, birthdayMonth : Integer)

Type: Void

You must initially set the value of the entire Record at once.

bd := ["Judith", 3]

[name = "Judith", birthdayMonth = 3]

Type: Record(name: String,birthdayMonth: Integer)

Once set, you can change any of the individual components.

bd.name := "Katie"

"Katie"

Type: String

Records may be nested and the selector names can be shared at different levels.

r : Record(a : Record(b: Integer, c: Integer), b: Integer)

Type: Void

The record r has a b selector at two different levels. Here is an initial value for r.

r := [ [1,2], 3 ]

[a = [b = 1, c = 2], b = 3]

Type: Record(a: Record(b: Integer,c: Integer),b: Integer)

This extracts the b component from the a component of r.

r.a.b

1

Type: PositiveInteger

This extracts the b component from r.

r.b

3

Type: PositiveInteger

You can also use spaces or parentheses to refer to Record components. This is the same as
r.a.

r(a)

[b = 1, c = 2]

Type: Record(b: Integer,c: Integer)
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This is the same as r.b.

r b

3

Type: PositiveInteger

This is the same as r.b := 10.

r(b) := 10

10

Type: PositiveInteger

Look at r to make sure it was modified.

r

[a = [b = 1, c = 2], b = 10]

Type: Record(a: Record(b: Integer,c: Integer),b: Integer)

5.5 Unions

Type Union is used for objects that can be of any of a specific finite set of types. Two
versions of unions are available, one with selectors (like records) and one without.

5.5.1 Unions Without Selectors

The declaration x : Union(Integer, String, F loat) states that x can have values that are
integers, strings or “big” floats. If, for example, the Union object is an integer, the object is
said to belong to the Integer branch of the Union. Note that we are being a bit careless with
the language here. Technically, the type of x is always Union(Integer, String, Float).
If it belongs to the Integer branch, x may be converted to an object of type Integer.

The syntax for writing a Union type without selectors is
Union(type1, type2, ..., typeN)

The types in a union without selectors must be distinct.

It is possible to create unions like Union(Integer, PositiveInteger) but they are difficult
to work with because of the overlap in the branch types. See below for the rules Axiom uses
for converting something into a union object.

The case infix operator returns a Boolean and can be used to determine the branch in which
an object lies.

This function displays a message stating in which branch of the Union the object (defined
as x above) lies.

sayBranch(x : Union(Integer,String,Float)) : Void ==

output

x case Integer => "Integer branch"

x case String => "String branch"

"Float branch"
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This tries sayBranch with an integer.

sayBranch 1

Compiling function sayBranch with type Union(Integer,String,Float)

-> Void

Integer branch

Type: Void

This tries sayBranch with a string.

sayBranch "hello"

String branch

Type: Void

This tries sayBranch with a floating-point number.

sayBranch 2.718281828

Float branch

Type: Void

There are two things of interest about this particular example to which we would like to
draw your attention.

1. Axiom normally converts a result to the target value before passing it to the function. If
we left the declaration information out of this function definition then the sayBranch
call would have been attempted with an Integer rather than a Union, and an error
would have resulted.

2. The types in a Union are searched in the order given. So if the type were given as

sayBranch(x: Union(String,Integer,Float,Any)): Void

then the result would have been “String branch” because there is a conversion from
Integer to String.

Sometimes Union types can have extremely long names. Axiom therefore abbreviates the
names of unions by printing the type of the branch first within the Union and then eliding
the remaining types with an ellipsis (...).

Here the Integer branch is displayed first. Use “::” to create a Union object from an
object.

78 :: Union(Integer,String)

78

Type: Union(Integer,...)

Here the String branch is displayed first.

s := "string" :: Union(Integer,String)

"string"

Type: Union(String,...)

Use typeOf to see the full and actual Union type.
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typeOf s

Union(Integer, String)

Type: Domain

A common operation that returns a union is exquo which returns the “exact quotient” if
the quotient is exact,

three := exquo(6,2)

3

Type: Union(Integer,...)

and "failed" if the quotient is not exact.

exquo(5,2)

"failed"

Type: Union("failed",...)

A union with a "failed" is frequently used to indicate the failure or lack of applicability
of an object. As another example, assign an integer a variable r declared to be a rational
number.

r: FRAC INT := 3

3

Type: Fraction Integer

The operation retractIfCan tries to retract the fraction to the underlying domain Integer.
It produces a union object. Here it succeeds.

retractIfCan(r)

3

Type: Union(Integer,...)

Assign it a rational number.

r := 3/2

3

2

Type: Fraction Integer

Here the retraction fails.

retractIfCan(r)

"failed"

Type: Union("failed",...)

5.5.2 Unions With Selectors

Like records, you can write Union types with selectors.
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The syntax for writing a Union type with selectors is
Union(selector1:type1, selector2:type2, ..., selectorN:typeN)

You must be careful if a selector has the same name as a variable in the
workspace. If this occurs, precede the selector name by a single quote. It
is an error to use a selector that does not correspond to the branch of the
Union in which the element actually lies.

Be sure to understand the difference between records and unions with selectors. Records
can have more than one component and the selectors are used to refer to the components.
Unions always have one component but the type of that one component can vary. An object
of type Record(a: Integer, b: Float, c: String) contains an integer and a float
and a string. An object of type Union(a: Integer, b: Float, c: String) contains
an integer or a float or a string.

Here is a version of the sayBranch function that works with a union with selectors. It
displays a message stating in which branch of the Union the object lies.

sayBranch(x:Union(i:Integer,s:String,f:Float)):Void==

output

x case i => "Integer branch"

x case s => "String branch"

"Float branch"

Note that case uses the selector name as its right-hand argument. If you accidentally use
the branch type on the right-hand side of case, false will be returned.

Declare variable u to have a union type with selectors.

u : Union(i : Integer, s : String)

Type: Void

Give an initial value to u.

u := "good morning"

"good morning"

Type: Union(s: String,...)

Use case to determine in which branch of a Union an object lies.

u case i

false

Type: Boolean

u case s

true

Type: Boolean

To access the element in a particular branch, use the selector.

u.s

"good morning"

Type: String
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5.6 The “Any” Domain

With the exception of objects of type Record, all Axiom data structures are homogenous,
that is, they hold objects all of the same type. If you need to get around this, you can use
type Any. Using Any, for example, you can create lists whose elements are integers, rational
numbers, strings, and even other lists.

Declare u to have type Any.

u: Any

Type: Void

Assign a list of mixed type values to u

u := [1, 7.2, 3/2, x**2, "wally"][
1, 7.2,

3

2
, x2, "wally"

]
Type: List Any

We can ask Axiom to show the types in an Any collection

showTypeInOutput(true)

"Type of object will be displayed in output of a member of Any"

Type: String

and now the output looks like

u[
1 : PositiveInteger, 7.2 : Float,

3

2
: Fraction(Integer), x2 : Polynomial(Integer), "wally" : String

]
Type: List Any

We can turn off type annotations with

showTypeInOutput(false)

"Type of object will not be displayed in output of a member of Any"

Type: String

When we ask for the elements, Axiom displays these types.

u.1

1

Type: PositiveInteger

Actually, these objects belong to Any but Axiom automatically converts them to their natural
types for you.

u.3

3

2

Type: Fraction Integer
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Since type Any can be anything, it can only belong to type Type. Therefore it cannot be
used in algebraic domains.

v : Matrix(Any)

Matrix Any is not a valid type.

Perhaps you are wondering how Axiom internally represents objects of type Any. An object
of type Any consists not only a data part representing its normal value, but also a type part
(a badge) giving its type. For example, the value 1 of type PositiveInteger as an object
of type Any internally looks like [1, PositiveInteger()].

When should you use Any instead of a Union type? For a Union, you must know in advance
exactly which types you are going to allow. For Any, anything that comes along can be
accommodated.

5.7 Conversion

Conversion is the process of changing an object of one type into an object of
another type. The syntax for conversion is:

object ::newType

By default, 3 has the type PositiveInteger.

3

3

Type: PositiveInteger

We can change this into an object of type Fraction Integer by using “::”.

3 :: Fraction Integer

3

Type: Fraction Integer

A coercion is a special kind of conversion that Axiom is allowed to do automatically when
you enter an expression. Coercions are usually somewhat safer than more general conver-
sions. The Axiom library contains operations called coerce and convert. Only the coerce
operations can be used by the interpreter to change an object into an object of another type
unless you explicitly use a ::.

By now you will be quite familiar with what types and modes look like. It is useful to think
of a type or mode as a pattern for what you want the result to be.

Let’s start with a square matrix of polynomials with complex rational number coefficients.

m : SquareMatrix(2,POLY COMPLEX FRAC INT)

Type: Void

m := matrix [ [x-3/4*%i,z*y**2+1/2],[3/7*%i*y**4 - x,12-%i*9/5] ]
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x− 3

4 i y2 z + 1
2

3
7 i y4 − x 12− 9

5 i

]
Type: SquareMatrix(2,Polynomial Complex Fraction Integer)

We first want to interchange the Complex and Fraction layers. We do the conversion by
doing the interchange in the type expression.

m1 := m :: SquareMatrix(2,POLY FRAC COMPLEX INT)[
x− 3 i

4 y2 z + 1
2

3 i
7 y4 − x 60−9 i

5

]
Type: SquareMatrix(2,Polynomial Fraction Complex Integer)

Interchange the Polynomial and the Fraction levels.

m2 := m1 :: SquareMatrix(2,FRAC POLY COMPLEX INT)[
4 x−3 i

4
2 y2 z+1

2
3 i y4−7 x

7
60−9 i

5

]
Type: SquareMatrix(2,Fraction Polynomial Complex Integer)

Interchange the Polynomial and the Complex levels.

m3 := m2 :: SquareMatrix(2,FRAC COMPLEX POLY INT)[
4 x−3 i

4
2 y2 z+1

2
−7 x+3 y4 i

7
60−9 i

5

]
Type: SquareMatrix(2,Fraction Complex Polynomial Integer)

All the entries have changed types, although in comparing the last two results only the entry
in the lower left corner looks different. We did all the intermediate steps to show you what
Axiom can do.

In fact, we could have combined all these into one conversion.

m :: SquareMatrix(2,FRAC COMPLEX POLY INT)[
4 x−3 i

4
2 y2 z+1

2
−7 x+3 y4 i

7
60−9 i

5

]
Type: SquareMatrix(2,Fraction Complex Polynomial Integer)

There are times when Axiom is not be able to do the conversion in one step. You may
need to break up the transformation into several conversions in order to get an object of the
desired type.

We cannot move either Fraction or Complex above (or to the left of, depending on how you
look at it) SquareMatrix because each of these levels requires that its argument type have
commutative multiplication, whereas SquareMatrix does not. That is because Fraction

requires that its argument belong to the category IntegralDomain and Complex requires
that its argument belong to CommutativeRing. The Integer level did not move anywhere
because it does not allow any arguments. We also did not move the SquareMatrix part
anywhere, but we could have.

Recall that m looks like this.
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m [
x− 3

4 i y2 z + 1
2

3
7 i y4 − x 12− 9

5 i

]
Type: SquareMatrix(2,Polynomial Complex Fraction Integer)

If we want a polynomial with matrix coefficients rather than a matrix with polynomial
entries, we can just do the conversion.

m :: POLY SquareMatrix(2,COMPLEX FRAC INT)[
0 1
0 0

]
y2 z +

[
0 0
3
7 i 0

]
y4 +

[
1 0
−1 0

]
x+

[
− 3

4 i 1
2

0 12− 9
5 i

]
Type: Polynomial SquareMatrix(2,Complex Fraction Integer)

We have not yet used modes for any conversions. Modes are a great shorthand for indicating
the type of the object you want. Instead of using the long type expression in the last example,
we could have simply said this.

m :: POLY ?[
0 1
0 0

]
y2 z +

[
0 0
3
7 i 0

]
y4 +

[
1 0
−1 0

]
x+

[
− 3

4 i 1
2

0 12− 9
5 i

]
Type: Polynomial SquareMatrix(2,Complex Fraction Integer)

We can also indicate more structure if we want the entries of the matrices to be fractions.

m :: POLY SquareMatrix(2,FRAC ?)[
0 1
0 0

]
y2 z +

[
0 0
3 i
7 0

]
y4 +

[
1 0
−1 0

]
x+

[
−3 i

4
1
2

0 60−9 i
5

]
Type: Polynomial SquareMatrix(2,Fraction Complex Integer)

5.8 Subdomains Again

A subdomain S of a domain D is a domain consisting of

1. those elements of D that satisfy some predicate (that is, a test that returns true or
false) and

2. a subset of the operations of D.

Every domain is a subdomain of itself, trivially satisfying the membership test: true.

Currently, there are only two system-defined subdomains in Axiom that receive substantial
use. PositiveInteger and NonNegativeInteger are subdomains of Integer. An element
x of NonNegativeInteger is an integer that is greater than or equal to zero, that is, satisfies
x >= 0. An element x of PositiveInteger is a nonnegative integer that is, in fact, greater
than zero, that is, satisfies x > 0. Not all operations from Integer are available for these
subdomains. For example, negation and subtraction are not provided since the subdomains
are not closed under those operations. When you use an integer in an expression, Axiom
assigns to it the type that is the most specific subdomain whose predicate is satisfied.

This is a positive integer.



5.8. SUBDOMAINS AGAIN 147

5

5

Type: PositiveInteger

This is a nonnegative integer.

0

0

Type: NonNegativeInteger

This is neither of the above.

-5

−5
Type: Integer

Furthermore, unless you are assigning an integer to a declared variable or using a conversion,
any integer result has as type the most specific subdomain.

(-2) - (-3)

1

Type: PositiveInteger

0 :: Integer

0

Type: Integer

x : NonNegativeInteger := 5

5

Type: NonNegativeInteger

When necessary, Axiom converts an integer object into one belonging to a less specific sub-
domain. For example, in 3−2, the arguments to “-” are both elements of PositiveInteger,
but this type does not provide a subtraction operation. Neither does NonNegativeInteger,
so 3 and 2 are viewed as elements of Integer, where their difference can be calculated. The
result is 1, which Axiom then automatically assigns the type PositiveInteger.

Certain operations are very sensitive to the subdomains to which their arguments belong.
This is an element of PositiveInteger.

2 ** 2

4

Type: PositiveInteger

This is an element of Fraction Integer.

2 ** (-2)

1

4



148 CHAPTER 5. USING TYPES AND MODES

Type: Fraction Integer

It makes sense then that this is a list of elements of PositiveInteger.

[10**i for i in 2..5]

[100, 1000, 10000, 100000]

Type: List PositiveInteger

What should the type of [10**(i-1) for i in 2..5] be? On one hand, i − 1 is always
an integer greater than zero as i ranges from 2 to 5 and so 10 ∗ ∗i is also always a positive
integer. On the other, i − 1 is a very simple function of i. Axiom does not try to analyze
every such function over the index’s range of values to determine whether it is always positive
or nowhere negative. For an arbitrary Axiom function, this analysis is not possible.

So, to be consistent no such analysis is done and we get this.

[10**(i-1) for i in 2..5]

[10, 100, 1000, 10000]

Type: List Fraction Integer

To get a list of elements of PositiveInteger instead, you have two choices. You can use a
conversion.

[10**((i-1) :: PI) for i in 2..5]

Compiling function G82696 with type Integer -> Boolean

Compiling function G82708 with type NonNegativeInteger -> Boolean

[10, 100, 1000, 10000]

Type: List PositiveInteger

Or you can use pretend.

[10**((i-1) pretend PI) for i in 2..5]

[10, 100, 1000, 10000]

Type: List PositiveInteger

The operation pretend is used to defeat the Axiom type system. The expression object

pretend D means “make a new object (without copying) of type D from object.” If object
were an integer and you told Axiom to pretend it was a list, you would probably see a
message about a fatal error being caught and memory possibly being damaged. Lists do not
have the same internal representation as integers!

You use pretend at your peril.

Use pretend with great care! Axiom trusts you that the value is of the specified type.

(2/3) pretend Complex Integer

2 + 3 i

Type: Complex Integer
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5.9 Package Calling and Target Types

Axiom works hard to figure out what you mean by an expression without your having to
qualify it with type information. Nevertheless, there are times when you need to help it
along by providing hints (or even orders!) to get Axiom to do what you want.

Declarations using types and modes control the type of the results produced. For example,
we can either produce a complex object with polynomial real and imaginary parts or a
polynomial with complex integer coefficients, depending on the declaration.

Package calling is used to tell Axiom to use a particular function from a particular part of
the library.

Use the “/” from Fraction Integer to create a fraction of two integers.

2/3

2

3
Type: Fraction Integer

If we wanted a floating point number, we can say “use the “/” in Float.”

(2/3)$Float

0.66666666666666666667

Type: Float

Perhaps we actually wanted a fraction of complex integers.

(2/3)$Fraction(Complex Integer)

2

3
Type: Fraction Complex Integer

In each case, Axiom used the indicated operations, sometimes first needing to convert the
two integers into objects of the appropriate type. In these examples, “/” is written as an
infix operator.

To use package calling with an infix operator, use the following syntax:

( arg1 op arg2 )$type

We used, for example, (2/3)$Float. The expression 2 + 3 + 4 is equivalent to (2 + 3) + 4.
Therefore in the expression (2+ 3+ 4)$Float the second “+” comes from the Float domain.
The first “+” comes from Float because the package call causes Axiom to convert (2 + 3)
and 4 to type Float. Before the sum is converted, it is given a target type of Float by Axiom
and then evaluated. The target type causes the “+” from Float to be used.

For an operator written before its arguments, you must use parentheses
around the arguments (even if there is only one), and follow the closing
parenthesis by a “$” and then the type.

fun ( arg1, arg2, . . . , argN )$type
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For example, to call the “minimum” function from DoubleFloat on two integers, you could
write min(4,89)$DoubleFloat. Another use of package calling is to tell Axiom to use a
library function rather than a function you defined.

Sometimes rather than specifying where an operation comes from, you just want to say what
type the result should be. We say that you provide a target type for the expression. Instead
of using a “$”, use a “@” to specify the requested target type. Otherwise, the syntax is the
same. Note that giving a target type is not the same as explicitly doing a conversion. The
first says “try to pick operations so that the result has such-and-such a type.” The second
says “compute the result and then convert to an object of such-and-such a type.”

Sometimes it makes sense, as in this expression, to say “choose the operations in this ex-
pression so that the final result is Float.

(2/3)@Float

0.66666666666666666667

Type: Float

Here we used “@” to say that the target type of the left-hand side was Float. In this simple
case, there was no real difference between using “$” and “@”. You can see the difference if
you try the following.

This says to try to choose “+” so that the result is a string. Axiom cannot do this.

(2 + 3)@String

An expression involving @ String actually evaluated to one of

type PositiveInteger . Perhaps you should use :: String .

This says to get the + from String and apply it to the two integers. Axiom also cannot do
this because there is no + exported by String.

(2 + 3)$String

The function + is not implemented in String .

(By the way, the operation concat or juxtaposition is used to concatenate two strings.)

When we have more than one operation in an expression, the difference is even more evident.
The following two expressions show that Axiom uses the target type to create different
objects. The “+”, “*” and “**” operations are all chosen so that an object of the correct
final type is created.

This says that the operations should be chosen so that the result is a Complex object.

((x + y * %i)**2)@(Complex Polynomial Integer)

−y2 + x2 + 2 x y i

Type: Complex Polynomial Integer

This says that the operations should be chosen so that the result is a Polynomial object.

((x + y * %i)**2)@(Polynomial Complex Integer)

−y2 + 2 i x y + x2

Type: Polynomial Complex Integer

What do you think might happen if we left off all target type and package call information
in this last example?
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(x + y * %i)**2

−y2 + 2 i x y + x2

Type: Polynomial Complex Integer

We can convert it to Complex as an afterthought. But this is more work than just saying
making what we want in the first place.

% :: Complex ?

−y2 + x2 + 2 x y i

Type: Complex Polynomial Integer

Finally, another use of package calling is to qualify fully an operation that is passed as an
argument to a function.

Start with a small matrix of integers.

h := matrix [ [8,6],[-4,9] ] [
8 6
−4 9

]
Type: Matrix Integer

We want to produce a new matrix that has for entries the multiplicative inverses of the
entries of h. One way to do this is by calling map with the inv function from Fraction

(Integer).

map(inv$Fraction(Integer),h) [
1
8

1
6

−1
4

1
9

]
Type: Matrix Fraction Integer

We could have been a bit less verbose and used abbreviations.

map(inv$FRAC(INT),h) [
1
8

1
6

−1
4

1
9

]
Type: Matrix Fraction Integer

As it turns out, Axiom is smart enough to know what we mean anyway. We can just say
this.

map(inv,h) [
1
8

1
6

−1
4

1
9

]
Type: Matrix Fraction Integer

5.10 Resolving Types

In this section we briefly describe an internal process by which Axiom determines a type
to which two objects of possibly different types can be converted. We do this to give you
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further insight into how Axiom takes your input, analyzes it, and produces a result.

What happens when you enter x + 1 to Axiom? Let’s look at what you get from the two
terms of this expression.

This is a symbolic object whose type indicates the name.

x

x

Type: Variable x

This is a positive integer.

1

1

Type: PositiveInteger

There are no operations in PositiveInteger that add positive integers to objects of type
Variable(x) nor are there any in Variable(x). Before it can add the two parts, Axiom
must come up with a common type to which both x and 1 can be converted. We say that
Axiom must resolve the two types into a common type. In this example, the common type
is Polynomial(Integer).

Once this is determined, both parts are converted into polynomials, and the addition oper-
ation from Polynomial(Integer) is used to get the answer.

x + 1

x+ 1

Type: Polynomial Integer

Axiom can always resolve two types: if nothing resembling the original types can be found,
then Any is be used. This is fine and useful in some cases.

["string",3.14159]

["string", 3.14159]

Type: List Any

In other cases objects of type Any can’t be used by the operations you specified.

"string" + 3.14159

There are 11 exposed and 5 unexposed library operations named +

having 2 argument(s) but none was determined to be applicable.

Use HyperDoc Browse, or issue

)display op +

to learn more about the available operations. Perhaps

package-calling the operation or using coercions on the

arguments will allow you to apply the operation.

Cannot find a definition or applicable library operation named +

with argument type(s)

String

Float
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Perhaps you should use "@" to indicate the required return type,

or "$" to specify which version of the function you need.

Although this example was contrived, your expressions may need to be qualified slightly to
help Axiom resolve the types involved. You may need to declare a few variables, do some
package calling, provide some target type information or do some explicit conversions.

We suggest that you just enter the expression you want evaluated and see what Axiom does.
We think you will be impressed with its ability to “do what I mean.” If Axiom is still being
obtuse, give it some hints. As you work with Axiom, you will learn where it needs a little
help to analyze quickly and perform your computations.

5.11 Exposing Domains and Packages

In this section we discuss how Axiom makes some operations available to you while hiding
others that are meant to be used by developers or only in rare cases. If you are a new user
of Axiom, it is likely that everything you need is available by default and you may want to
skip over this section on first reading.

Every domain and package in the Axiom library is either exposed (meaning that you can use
its operations without doing anything special) or it is hidden (meaning you have to either
package call the operations it contains or explicitly expose it to use the operations). The
initial exposure status for a constructor is set in the file exposed.lsp (see the Installer’s
Note for Axiom if you need to know the location of this file). Constructors are collected
together in exposure groups. Categories are all in the exposure group “categories” and the
bulk of the basic set of packages and domains that are exposed are in the exposure group
“basic.” Here is an abbreviated sample of the file (without the Lisp parentheses):

basic

AlgebraicNumber AN

AlgebraGivenByStructuralConstants ALGSC

Any ANY

AnyFunctions1 ANY1

BinaryExpansion BINARY

Boolean BOOLEAN

CardinalNumber CARD

CartesianTensor CARTEN

Character CHAR

CharacterClass CCLASS

CliffordAlgebra CLIF

Color COLOR

Complex COMPLEX

ContinuedFraction CONTFRAC

DecimalExpansion DECIMAL

...

categories

AbelianGroup ABELGRP

AbelianMonoid ABELMON

AbelianMonoidRing AMR

AbelianSemiGroup ABELSG

Aggregate AGG
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Algebra ALGEBRA

AlgebraicallyClosedField ACF

AlgebraicallyClosedFunctionSpace ACFS

ArcHyperbolicFunctionCategory AHYP

...

For each constructor in a group, the full name and the abbreviation is given. There are
other groups in exposed.lsp but initially only the constructors in exposure groups “basic”
“categories” “naglink” and “anna” are exposed.

As an interactive user of Axiom, you do not need to modify this file. Instead, use )set

expose to expose, hide or query the exposure status of an individual constructor or expo-
sure group. The reason for having exposure groups is to be able to expose or hide multiple
constructors with a single command. For example, you might group together into exposure
group “quantum” a number of domains and packages useful for quantum mechanical com-
putations. These probably should not be available to every user, but you want an easy way
to make the whole collection visible to Axiom when it is looking for operations to apply.

If you wanted to hide all the basic constructors available by default, you would issue )set

expose drop group basic. We do not recommend that you do this. If, however, you
discover that you have hidden all the basic constructors, you should issue )set expose add

group basic to restore your default environment.

It is more likely that you would want to expose or hide individual constructors. We use
several operations from OutputForm, a domain usually hidden. To avoid package calling
every operation from OutputForm, we expose the domain and let Axiom conclude that those
operations should be used. Use )set expose add constructor and )set expose drop

constructor to expose and hide a constructor, respectively. You should use the constructor
name, not the abbreviation. The )set expose command guides you through these options.

If you expose a previously hidden constructor, Axiom exhibits new behavior (that was your
intention) though you might not expect the results that you get. OutputForm is, in fact, one
of the worst offenders in this regard. This domain is meant to be used by other domains for
creating a structure that Axiom knows how to display. It has functions like “+” that form
output representations rather than do mathematical calculations. Because of the order in
which Axiom looks at constructors when it is deciding what operation to apply, OutputForm
might be used instead of what you expect.

This is a polynomial.

x + x

2 x

Type: Polynomial Integer

Expose OutputForm.

)set expose add constructor OutputForm

OutputForm is now explicitly exposed in frame G82322

This is what we get when OutputForm is automatically available.

x + x

x+ x
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Type: OutputForm

Hide OutputForm so we don’t run into problems with any later examples!

)set expose drop constructor OutputForm

OutputForm is now explicitly hidden in frame G82322

Finally, exposure is done on a frame-by-frame basis. A frame is one of possibly several logical
Axiom workspaces within a physical one, each having its own environment (for example,
variables and function definitions). If you have several Axiom workspace windows on your
screen, they are all different frames, automatically created for you by HyperDoc. Frames
can be manually created, made active and destroyed by the )frame system command. They
do not share exposure information, so you need to use )set expose in each one to add or
drop constructors from view.

5.12 Commands for Snooping

To conclude this chapter, we introduce you to some system commands that you can use for
getting more information about domains, packages, categories, and operations. The most
powerful Axiom facility for getting information about constructors and operations is the
Browse component of HyperDoc.

Use the )what system command to see lists of system objects whose name contain a particular
substring (uppercase or lowercase is not significant).

Issue this to see a list of all operations with “complex” in their names.

)what operation complex

Operations whose names satisfy the above pattern(s):

complex complex?

complexEigenvalues complexEigenvectors

complexElementary complexExpand

complexForm complexIntegrate

complexLimit complexNormalize

complexNumeric complexNumericIfCan

complexRoots complexSolve

complexZeros createLowComplexityNormalBasis

createLowComplexityTable doubleComplex?

drawComplex drawComplexVectorField

fortranComplex fortranDoubleComplex

pmComplexintegrate

To get more information about an operation such as

complexZeros, issue the command )display op complexZeros

If you want to see all domains with “matrix” in their names, issue this.

)what domain matrix

----------------------- Domains -----------------------

Domains with names matching patterns:

matrix
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DHMATRIX DenavitHartenbergMatrix

DPMM DirectProductMatrixModule

IMATRIX IndexedMatrix

LSQM LieSquareMatrix

M3D ThreeDimensionalMatrix

MATCAT- MatrixCategory&

MATRIX Matrix

RMATCAT- RectangularMatrixCategory&

RMATRIX RectangularMatrix

SMATCAT- SquareMatrixCategory&

SQMATRIX SquareMatrix

Similarly, if you wish to see all packages whose names contain “gauss”, enter this.

)what package gauss

---------------------- Packages -----------------------

Packages with names matching patterns:

gauss

GAUSSFAC GaussianFactorizationPackage

This command shows all the operations that Any provides. Wherever $ appears, it means
“Any”.

)show Any

Any is a domain constructor

Abbreviation for Any is ANY

This constructor is exposed in this frame.

Issue )edit /usr/local/axiom/mnt/algebra/any.spad

to see algebra source code for ANY

--------------------- Operations ----------------------

?=? : (%,%) -> Boolean

any : (SExpression,None) -> %

coerce : % -> OutputForm

dom : % -> SExpression

domainOf : % -> OutputForm

hash : % -> SingleInteger

latex : % -> String

obj : % -> None

objectOf : % -> OutputForm

?~=? : (%,%) -> Boolean

showTypeInOutput : Boolean -> String

This displays all operations with the name complex.

)display operation complex

There is one exposed function called complex :

[1] (D1,D1) -> D from D if D has COMPCAT D1 and D1 has COMRING

Let’s analyze this output.

First we find out what some of the abbreviations mean.
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)abbreviation query COMPCAT

COMPCAT abbreviates category ComplexCategory

)abbreviation query COMRING

COMRING abbreviates category CommutativeRing

So if D1 is a commutative ring (such as the integers or floats) and D belongs to ComplexCategory
D1, then there is an operation called complex that takes two elements of D1 and creates
an element of D. The primary example of a constructor implementing domains belonging to
ComplexCategory is Complex.
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Chapter 6

Using HyperDoc

Figure 6.1: The HyperDoc root window page

HyperDoc is the gateway to Axiom. It’s both an on-line tutorial and an on-line reference
manual. It also enables you to use Axiom simply by using the mouse and filling in templates.
HyperDoc is available to you if you are running Axiom under the X Window System.

Pages usually have active areas, marked in this font (bold face). As you move the mouse
pointer to an active area, the pointer changes from a filled dot to an open circle. The active
areas are usually linked to other pages. When you click on an active area, you move to the
linked page.

159
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6.1 Headings

Most pages have a standard set of buttons at the top of the page. This is what they mean:

Click on this to get help. The button only appears if there is specific help for the
page you are viewing. You can get general help for HyperDoc by clicking the help
button on the home page.

Click here to go back one page. By clicking on this button repeatedly, you can go
back several pages and then take off in a new direction.

Go back to the home page, that is, the page on which you started. Use HyperDoc to
explore, to make forays into new topics. Don’t worry about how to get back. HyperDoc
remembers where you came from. Just click on this button to return.

From the root window (the one that is displayed when you start the system) this
button leaves the HyperDoc program, and it must be restarted if you want to use it
again. From any other HyperDoc window, it just makes that one window go away. You
must use this button to get rid of a window. If you use the window manager “Close”
button, then all of HyperDoc goes away.

The buttons are not displayed if they are not applicable to the page you are viewing. For

example, there is no button on the top-level menu.

6.2 Key Definitions

The following keyboard definitions are in effect throughout HyperDoc.

F1 Display the main help page.

F3 Same as , makes the window go away if you are not at the top-level window or
quits the HyperDoc facility if you are at the top-level.

F5 Rereads the HyperDoc database, if necessary (for system developers).

F9 Displays this information about key definitions.

F12 Same as F3.

Up Arrow Scroll up one line.

Down Arrow Scroll down one line.

Page Up Scroll up one page.

Page Down Scroll down one page.

6.3 Scroll Bars

Whenever there is too much text to fit on a page, a scroll bar automatically appears along
the right side.

With a scroll bar, your page becomes an aperture, that is, a window into a larger amount
of text than can be displayed at one time. The scroll bar lets you move up and down in the
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text to see different parts. It also shows where the aperture is relative to the whole text.
The aperture is indicated by a strip on the scroll bar.

Move the cursor with the mouse to the “down-arrow” at the bottom of the scroll bar and
click. See that the aperture moves down one line. Do it several times. Each time you click,
the aperture moves down one line. Move the mouse to the “up-arrow” at the top of the
scroll bar and click. The aperture moves up one line each time you click.

Next move the mouse to any position along the middle of the scroll bar and click. HyperDoc
attempts to move the top of the aperture to this point in the text.

You cannot make the aperture go off the bottom edge. When the aperture is about half the
size of text, the lowest you can move the aperture is halfway down.

To move up or down one screen at a time, use the PageUp and PageDown keys on

your keyboard. They move the visible part of the region up and down one page each time
you press them.

If the HyperDoc page does not contain an input area, you can also use the Home and ↑
and ↓ arrow keys to navigate. When you press the Home key, the screen is positioned

at the very top of the page. Use the ↑ and ↓ arrow keys to move the screen up and down

one line at a time, respectively.

6.4 Input Areas

Input areas are boxes where you can put data.

To enter characters, first move your mouse cursor to somewhere within the HyperDoc page.
Characters that you type are inserted in front of the underscore. This means that when you
type characters at your keyboard, they go into this first input area.

The input area grows to accommodate as many characters as you type. Use the Backspace

key to erase characters to the left. To modify what you type, use the right-arrow → and

left-arrow keys ← and the keys Insert , Delete , Home and End . These keys are
found immediately on the right of the standard IBM keyboard.

If you press the Home key, the cursor moves to the beginning of the line and if you press

the End key, the cursor moves to the end of the line. Pressing Ctrl – End deletes all
the text from the cursor to the end of the line.

A page may have more than one input area. Only one input area has an underscore cursor.
When you first see apage, the top-most input area contains the cursor. To type information

into another input area, use the Enter or Tab key to move from one input area to

xanother. To move in the reverse order, use Shift – Tab .

You can also move from one input area to another using your mouse. Notice that each input
area is active. Click on one of the areas. As you can see, the underscore cursor moves to
that window.
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6.5 Radio Buttons and Toggles

Some pages have radio buttons and toggles. Radio buttons are a group of buttons like those
on car radios: you can select only one at a time.

Once you have selected a button, it appears to be inverted and contains a checkmark. To
change the selection, move the cursor with the mouse to a different radio button and click.

A toggle is an independent button that displays some on/off state. When “on”, the button
appears to be inverted and contains a checkmark. When “off”, the button is raised.

Unlike radio buttons, you can set a group of them any way you like. To change toggle the
selection, move the cursor with the mouse to the button and click.

6.6 Search Strings

A search string is used for searching some database. To learn about search strings, we suggest
that you bring up the HyperDoc glossary. To do this from the top-level page of HyperDoc:

1. Click on Reference, bringing up the Axiom Reference page.

2. Click on Glossary, bringing up the glossary.

The glossary has an input area at its bottom. We review the various kinds of search strings
you can enter to search the glossary.

The simplest search string is a word, for example, operation. A word only matches an entry
having exactly that spelling. Enter the word operation into the input area above then click
on Search. As you can see, operation matches only one entry, namely with operation

itself.

Normally matching is insensitive to whether the alphabetic characters of your search string
are in uppercase or lowercase. Thus operation and OperAtion both have the same effect.

You will very often want to use the wildcard “*” in your search string so as to match multiple
entries in the list. The search key “*” matches every entry in the list. You can also use “*”
anywhere within a search string to match an arbitrary substring. Try “cat*” for example:
enter “cat*” into the input area and click on Search. This matches several entries.

You use any number of wildcards in a search string as long as they are not adjacent. Try
search strings such as “*dom*”. As you see, this search string matches “domain”, “domain
constructor”, “subdomain”, and so on.

6.6.1 Logical Searches

For more complicated searches, you can use “and”, “or”, and “not” with basic search strings;
write logical expressions using these three operators just as in the Axiom language. For ex-
ample, domain or package matches the two entries domain and package. Similarly, “dom*
and *con*” matches “domain constructor” and others. Also “not *a*” matches every
entry that does not contain the letter “a” somewhere.

Use parentheses for grouping. For example, “dom* and (not *con*)” matches “domain”
but not “domain constructor”.

There is no limit to how complex your logical expression can be. For example,
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a* or b* or c* or d* or e* and (not *a*)

is a valid expression.

6.7 Example Pages

Many pages have Axiom example commands.

Each command has an active “button” along the left margin. When you click on this button,
the output for the command is “pasted-in.” Click again on the button and you see that the
pasted-in output disappears.

Maybe you would like to run an example? To do so, just click on any part of its text! When
you do, the example line is copied into a new interactive Axiom buffer for this HyperDoc
page.

Sometimes one example line cannot be run before you run an earlier one. Don’t worry—
HyperDoc automatically runs all the necessary lines in the right order!

The new interactive Axiom buffer disappears when you leave HyperDoc. If you want to get
rid of it beforehand, use the Cancel button of the X Window manager or issue the Axiom
system command )close.

6.8 X Window Resources for HyperDoc

You can control the appearance of HyperDoc while running under Version 11 of the X
Window System by placing the following resources in the file .Xdefaults in your home
directory. In what follows, font is any valid X11 font name (for example, Rom14) and color
is any valid X11 color specification (for example, NavyBlue). For more information about
fonts and colors, refer to the X Window documentation for your system.

Axiom.hyperdoc.RmFont: font
This is the standard text font. The default value is Rom14

Axiom.hyperdoc.RmColor: color
This is the standard text color. The default value is black

Axiom.hyperdoc.ActiveFont: font
This is the font used for HyperDoc link buttons. The default value is Bld14

Axiom.hyperdoc.ActiveColor: color
This is the color used for HyperDoc link buttons. The default value is black

Axiom.hyperdoc.AxiomFont: font
This is the font used for active Axiom commands. The default value is Bld14

Axiom.hyperdoc.AxiomColor: color
This is the color used for active Axiom commands. The default value is black

Axiom.hyperdoc.BoldFont: font
This is the font used for bold face. The default value is Bld14

Axiom.hyperdoc.BoldColor: color
This is the color used for bold face. The default value is black

Axiom.hyperdoc.TtFont: font
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This is the font used for Axiom output in HyperDoc. This font must be fixed-width.
The default value is Rom14

Axiom.hyperdoc.TtColor: color
This is the color used for Axiom output in HyperDoc. The default value is black

Axiom.hyperdoc.EmphasizeFont: font
This is the font used for italics. The default value is Itl14

Axiom.hyperdoc.EmphasizeColor: color
This is the color used for italics. The default value is black

Axiom.hyperdoc.InputBackground: color
This is the color used as the background for input areas. The default value is black

Axiom.hyperdoc.InputForeground: color
This is the color used as the foreground for input areas. The default value is white

Axiom.hyperdoc.BorderColor: color
This is the color used for drawing border lines. The default value is black

Axiom.hyperdoc.Background: color
This is the color used for the background of all windows. The default value is white



Chapter 7

Input Files and Output Styles

In this chapter we discuss how to collect Axiom statements and commands into files and
then read the contents into the workspace. We also show how to display the results of
your computations in several different styles including TEX, FORTRAN and monospace
two-dimensional format.1

The printed version of this book uses the Axiom TEX output formatter. When we demon-
strate a particular output style, we will need to turn TEX formatting off and the output style
on so that the correct output is shown in the text.

7.1 Input Files

In this section we explain what an input file is and why you would want to know about it.
We discuss where Axiom looks for input files and how you can direct it to look elsewhere.
We also show how to read the contents of an input file into the workspace and how to use
the history facility to generate an input file from the statements you have entered directly
into the workspace.

An input file contains Axiom expressions and system commands. Anything that you can
enter directly to Axiom can be put into an input file. This is how you save input functions
and expressions that you wish to read into Axiom more than one time.

To read an input file into Axiom, use the )read system command. For example, you can
read a file in a particular directory by issuing

)read /spad/src/input/matrix.input

The “.input” is optional; this also works:

)read /spad/src/input/matrix

What happens if you just enter )read matrix.input or even )read matrix? Axiom looks
in your current working directory for input files that are not qualified by a directory name.
Typically, this directory is the directory from which you invoked Axiom.

To change the current working directory, use the )cd system command. The command )cd

by itself shows the current working directory. To change it to the src/input subdirectory

1 TEX is a trademark of the American Mathematical Society.
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for user “babar”, issue

)cd /u/babar/src/input

Axiom looks first in this directory for an input file. If it is not found, it looks in the system’s
directories, assuming you meant some input file that was provided with Axiom.

If you have the Axiom history facility turned on (which it is by default), you
can save all the lines you have entered into the workspace by entering
)history )write
Axiom tells you what input file to edit to see your statements. The file is in
your home directory or in the directory you specified with )cd.

7.2 The .axiom.input File

When Axiom starts up, it tries to read the input file .axiom.input2 from your home direc-
tory. It there is no .axiom.input in your home directory, it reads the copy located in its
own src/input directory. The file usually contains system commands to personalize your
Axiom environment. In the remainder of this section we mention a few things that users
frequently place in their .axiom.input files.

In order to have FORTRAN output always produced from your computations, place the
system command )set output fortran on in .axiom.input. If you do not want to be
prompted for confirmation when you issue the )quit system command, place )set quit

unprotected in .axiom.input. If you then decide that you do want to be prompted, issue
)set quit protected. This is the default setting so that new users do not leave Axiom
inadvertently. The system command )pquit always prompts you for confirmation.

7.3 Common Features of Using Output Formats

In this section we discuss how to start and stop the display of the different output formats
and how to send the output to the screen or to a file. To fix ideas, we use FORTRAN output
format for most of the examples.

You can use the )set output system command to toggle or redirect the different kinds of
output. The name of the kind of output follows “output” in the command. The names are

fortran for FORTRAN output.
algebra for monospace two-dimensional mathematical output.
tex for TEX output.
script for IBM Script Formula Format output.

For example, issue )set output fortran on to turn on FORTRAN format and issue )set
output fortran off to turn it off. By default, algebra is on and all others are off. When
output is started, it is sent to the screen. To send the output to a file, give the file name
without directory or extension. Axiom appends a file extension depending on the kind of
output being produced.

Issue this to redirect FORTRAN output to, for example, the file linalg.sfort.

)set output fortran linalg

2 .axiom.input used to be called axiom.input in the NAG version
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FORTRAN output will be written to file linalg.sfort .

You must also turn on the creation of FORTRAN output. The above just says where it goes
if it is created.

)set output fortran on

In what directory is this output placed? It goes into the directory from which you started
Axiom, or if you have used the )cd system command, the one that you specified with )cd.
You should use )cd before you send the output to the file.

You can always direct output back to the screen by issuing this.

)set output fortran console

Let’s make sure FORTRAN formatting is off so that nothing we do from now on produces
FORTRAN output.

)set output fortran off

We also delete the demonstrated output file we created.

)system rm linalg.sfort

You can abbreviate the words “on,” “off,” and “console” to the minimal number of char-
acters needed to distinguish them. Because of this, you cannot send output to files called
on.sfort, off.sfort, of.sfort, console.sfort, consol.sfort and so on.

The width of the output on the page is set by )set output length for all formats except
FORTRAN. Use )set fortran fortlength to change the FORTRAN line length from its
default value of 72.

7.4 Monospace Two-Dimensional Mathematical Format

This is the default output format for Axiom. It is usually on when you start the system.

If it is not, issue this.

)set output algebra on

Since the printed version of this book (as opposed to the HyperDoc version) shows output
produced by the TEX output formatter, let us temporarily turn off TEX output.

)set output tex off

Here is an example of what it looks like.

matrix [ [i*x**i + j*%i*y**j for i in 1..2] for j in 3..4]

+ 3 3 2+

|3%i y + x 3%i y + 2x |

(1) | |

| 4 4 2|

+4%i y + x 4%i y + 2x +

Type: Matrix Polynomial Complex Integer

Issue this to turn off this kind of formatting.

)set output algebra off
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Turn TEX output on again.

)set output tex on

The characters used for the matrix brackets above are rather ugly. You get this character set
when you issue )set output characters plain. This character set should be used when
you are running on a machine that does not support the IBM extended ASCII character set.
If you are running on an IBM workstation, for example, issue )set output characters

default to get better looking output.

7.5 TeX Format

Axiom can produce TEX output for your expressions. The output is produced using macros
from the LATEX document preparation system by Leslie Lamport[Lamp86]. The printed
version of this book was produced using this formatter.

To turn on TEX output formatting, issue this.

)set output tex on

Here is an example of its output.

matrix [ [i*x**i + j*\%i*y**j for i in 1..2] for j in 3..4]

$$

\left[

\begin{array}{cc}

{{3 \ i \ {y \sp 3}}+x} &

{{3 \ i \ {y \sp 3}}+{2 \ {x \sp 2}}} \\

{{4 \ i \ {y \sp 4}}+x} &

{{4 \ i \ {y \sp 4}}+{2 \ {x \sp 2}}}

\end{array}

\right]

$$

This formats as [
3 i y3 + x 3 i y3 + 2 x2

4 i y4 + x 4 i y4 + 2 x2

]
To turn TEX output formatting off, issue )set output tex off. The LATEXmacros in the
output generated by Axiom are all standard except for the following definitions:

\def\csch{\mathop{\rm csch}\nolimits}

\def\erf{\mathop{\rm erf}\nolimits}

\def\zag#1#2{

{{\hfill \left. {#1} \right|}

\over

{\left| {#2} \right. \hfill}

}

}
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7.6 IBM Script Formula Format

Axiom can produce IBM Script Formula Format output for your expressions.

To turn IBM Script Formula Format on, issue this.

)set output script on

Here is an example of its output.

matrix [ [i*x**i + j*%i*y**j for i in 1..2] for j in 3..4]

.eq set blank @

:df.

<left lb < < < <3 @@ %i @@ <y sup 3> >+x> here < <3 @@ %i @@

<y sup 3> >+<2 @@ <x sup 2> > > > habove < < <4 @@ %i @@

<y sup 4> >+x> here < <4 @@ %i @@ <y sup 4> >+<2 @@

<x up 2> > > > > right rb>

:edf.

To turn IBM Script Formula Format output formatting off, issue this.

)set output script off

7.7 FORTRAN Format

In addition to turning FORTRAN output on and off and stating where the output should
be placed, there are many options that control the appearance of the generated code. In
this section we describe some of the basic options. Issue )set fortran to see a full list with
their current settings.

The output FORTRAN expression usually begins in column 7. If the expression needs
more than one line, the ampersand character & is used in column 6. Since some versions
of FORTRAN have restrictions on the number of lines per statement, Axiom breaks long
expressions into segments with a maximum of 1320 characters (20 lines of 66 characters)
per segment. If you want to change this, say, to 660 characters, issue the system command
)set fortran explength 660. You can turn off the line breaking by issuing )set fortran

segment off. Various code optimization levels are available.

FORTRAN output is produced after you issue this.

)set output fortran on

For the initial examples, we set the optimization level to 0, which is the lowest level.

)set fortran optlevel 0

The output is usually in columns 7 through 72, although fewer columns are used in the
following examples so that the output fits nicely on the page.

)set fortran fortlength 60

By default, the output goes to the screen and is displayed before the standard Axiom two-
dimensional output. In this example, an assignment to the variable R1 was generated because
this is the result of step 1.

(x+y)**3
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R1=y**3+3*x*y*y+3*x*x*y+x**3

y3 + 3 x y2 + 3 x2 y + x3

Type: Polynomial Integer

Here is an example that illustrates the line breaking.

(x+y+z)**3

R2=z**3+(3*y+3*x)*z*z+(3*y*y+6*x*y+3*x*x)*z+y**3+3*x*y

&*y+3*x*x*y+x**3

z3 + (3 y + 3 x) z2 +
(
3 y2 + 6 x y + 3 x2

)
z + y3 + 3 x y2 + 3 x2 y + x3

Type: Polynomial Integer

Note in the above examples that integers are generally converted to floating point numbers,
except in exponents. This is the default behavior but can be turned off by issuing )set

fortran ints2floats off. The rules governing when the conversion is done are:

1. If an integer is an exponent, convert it to a floating point number if it is greater than
32767 in absolute value, otherwise leave it as an integer.

2. Convert all other integers in an expression to floating point numbers.

These rules only govern integers in expressions. Numbers generated by Axiom forDIMENSION
statements are also integers.

To set the type of generated FORTRAN data, use one of the following:

)set fortran defaulttype REAL

)set fortran defaulttype INTEGER

)set fortran defaulttype COMPLEX

)set fortran defaulttype LOGICAL

)set fortran defaulttype CHARACTER

When temporaries are created, they are given a default type of REAL. Also, the REAL versions
of functions are used by default.

sin(x)

R3=DSIN(x)

sin (x)

Type: Expression Integer

At optimization level 1, Axiom removes common subexpressions.

)set fortran optlevel 1

(x+y+z)**3

T2=y*y

T3=x*x

R4=z**3+(3*y+3*x)*z*z+(3*T2+6*x*y+3*T3)*z+y**3+3*x*T2+

&3*T3*y+x**3

z3 + (3 y + 3 x) z2 +
(
3 y2 + 6 x y + 3 x2

)
z + y3 + 3 x y2 + 3 x2 y + x3

Type: Polynomial Integer
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This changes the precision to DOUBLE. Substitute single for double to return to single
precision.

)set fortran precision double

Complex constants display the precision.

2.3 + 5.6*%i

R5=(2.3D0,5.6D0)

2.3 + 5.6 i

Type: Complex Float

The function names that Axiom generates depend on the chosen precision.

sin %e

R6=DSIN(DEXP(1))

sin (e)

Type: Expression Integer

Reset the precision to single and look at these two examples again.

)set fortran precision single

2.3 + 5.6*%i

R7=(2.3,5.6)

2.3 + 5.6 i

Type: Complex Float

sin %e

R8=SIN(EXP(1))

sin (e)

Type: Expression Integer

Expressions that look like lists, streams, sets or matrices cause array code to be generated.

[x+1,y+1,z+1]

T1(1)=x+1

T1(2)=y+1

T1(3)=z+1

R9=T1

[x+ 1, y + 1, z + 1]

Type: List Polynomial Integer

A temporary variable is generated to be the name of the array. This may have to be changed
in your particular application.

set[2,3,4,3,5]
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T1(1)=2

T1(2)=3

T1(3)=4

T1(4)=5

R10=T1

{2, 3, 4, 5}

Type: Set PositiveInteger

By default, the starting index for generated FORTRAN arrays is 0.

matrix [ [2.3,9.7],[0.0,18.778] ]

T1(0,0)=2.3

T1(0,1)=9.7

T1(1,0)=0.0

T1(1,1)=18.778

T1 [
2.3 9.7
0.0 18.778

]
Type: Matrix Float

To change the starting index for generated FORTRAN arrays to be 1, issue this. This value
can only be 0 or 1.

)set fortran startindex 1

Look at the code generated for the matrix again.

matrix [ [2.3,9.7],[0.0,18.778] ]

T1(1,1)=2.3

T1(1,2)=9.7

T1(2,1)=0.0

T1(2,2)=18.778

T1 [
2.3 9.7
0.0 18.778

]
Type: Matrix Float
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Axiom System Commands

This chapter describes system commands, the command-line facilities used to control the
Axiom environment. The first section is an introduction and discusses the common syntax
of the commands available.

8.1 Introduction

System commands are used to perform Axiom environment management. Among the com-
mands are those that display what has been defined or computed, set up multiple logical
Axiom environments (frames), clear definitions, read files of expressions and commands,
show what functions are available, and terminate Axiom.

Some commands are restricted: the commands

)set userlevel interpreter

)set userlevel compiler

)set userlevel development

set the user-access level to the three possible choices. All commands are available at
development level and the fewest are available at interpreter level. The default user-
level is interpreter. In addition to the )set command you can use the HyperDoc settings
facility to change the user-level.

Each command listing begins with one or more syntax pattern descriptions plus examples
of related commands. The syntax descriptions are intended to be easy to read and do not
necessarily represent the most compact way of specifying all possible arguments and options;
the descriptions may occasionally be redundant.

All system commands begin with a right parenthesis which should be in the first available
column of the input line (that is, immediately after the input prompt, if any). System
commands may be issued directly to Axiom or be included in .input files.

A system command argument is a word that directly follows the command name and is not
followed or preceded by a right parenthesis. A system command option follows the system
command and is directly preceded by a right parenthesis. Options may have arguments:
they directly follow the option. This example may make it easier to remember what is an
option and what is an argument:
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)syscmd arg1 arg2 )opt1 opt1arg1 opt1arg2 )opt2 opt2arg1 ...

In the system command descriptions, optional arguments and options are enclosed in brackets
(“[” and “]”). If an argument or option name is in italics, it is meant to be a variable and
must have some actual value substituted for it when the system command call is made. For
example, the syntax pattern description

)read fileName [)quietly]

would imply that you must provide an actual file name for fileName but need not use the
)quietly option. Thus

)read matrix.input

is a valid instance of the above pattern.

System command names and options may be abbreviated and may be in upper or lower case.
The case of actual arguments may be significant, depending on the particular situation (such
as in file names). System command names and options may be abbreviated to the minimum
number of starting letters so that the name or option is unique. Thus

)s Integer

is not a valid abbreviation for the )set command, because both )set and )show begin with
the letter “s”. Typically, two or three letters are sufficient for disambiguating names. In our
descriptions of the commands, we have used no abbreviations for either command names or
options.

In some syntax descriptions we use a vertical line “|” to indicate that you must specify one
of the listed choices. For example, in

)set output fortran on | off

only on and off are acceptable words for following boot. We also sometimes use “...” to
indicate that additional arguments or options of the listed form are allowed. Finally, in the
syntax descriptions we may also list the syntax of related commands.

8.2 )abbreviation

User Level Required: compiler

Command Syntax:

)abbreviation query [nameOrAbbrev]

)abbreviation category abbrev fullname [)quiet]

)abbreviation domain abbrev fullname [)quiet]

)abbreviation package abbrev fullname [)quiet]

)abbreviation remove nameOrAbbrev

Command Description:

This command is used to query, set and remove abbreviations for category, domain and pack-
age constructors. Every constructor must have a unique abbreviation. This abbreviation is
part of the name of the subdirectory under which the components of the compiled construc-
tor are stored. Furthermore, by issuing this command you let the system know what file to
load automatically if you use a new constructor. Abbreviations must start with a letter and
then be followed by up to seven letters or digits. Any letters appearing in the abbreviation



8.3. )BOOT 175

must be in uppercase.

When used with the query argument, this command may be used to list the name associated
with a particular abbreviation or the abbreviation for a constructor. If no abbreviation or
name is given, the names and corresponding abbreviations for all constructors are listed.

The following shows the abbreviation for the constructor List:

)abbreviation query List

The following shows the constructor name corresponding to the abbreviation NNI:

)abbreviation query NNI

The following lists all constructor names and their abbreviations.

)abbreviation query

To add an abbreviation for a constructor, use this command with category, domain or
package. The following add abbreviations to the system for a category, domain and
package, respectively:

)abbreviation domain SET Set

)abbreviation category COMPCAT ComplexCategory

)abbreviation package LIST2MAP ListToMap

If the )quiet option is used, no output is displayed from this command. You would normally
only define an abbreviation in a library source file. If this command is issued for a constructor
that has already been loaded, the constructor will be reloaded next time it is referenced. In
particular, you can use this command to force the automatic reloading of constructors.

To remove an abbreviation, the remove argument is used. This is usually only used to
correct a previous command that set an abbreviation for a constructor name. If, in fact, the
abbreviation does exist, you are prompted for confirmation of the removal request. Either
of the following commands will remove the abbreviation VECTOR2 and the constructor name
VectorFunctions2 from the system:

)abbreviation remove VECTOR2

)abbreviation remove VectorFunctions2

Also See: )compile

8.3 )boot

User Level Required: development

Command Syntax:

)boot bootExpression

Command Description:

This command is used by Axiom system developers to execute expressions written in the
BOOT language. For example,

)boot times3(x) == 3*x

creates and compiles the Common Lisp function “times3” obtained by translating the BOOT
code.

Also See: )fin )lisp , )set , and )system .
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8.4 )cd

User Level Required: interpreter

Command Syntax:

)cd directory

Command Description:

This command sets the Axiom working current directory. The current directory is used for
looking for input files (for )read), Axiom library source files (for )compile), saved history
environment files (for )history )restore), compiled Axiom library files (for )library), and
files to edit (for )edit). It is also used for writing spool files (via )spool), writing history
input files (via )history )write) and history environment files (via )history )save),and
compiled Axiom library files (via )compile).

If issued with no argument, this command sets the Axiom current directory to your home
directory. If an argument is used, it must be a valid directory name. Except for the “)”
at the beginning of the command, this has the same syntax as the operating system cd

command.

Also See: )compile , )edit , )history , )library , )read , and )spool .

8.5 )close

User Level Required: interpreter

Command Syntax:

)close

)close )quietly

Command Description:

This command is used to close down interpreter client processes. Such processes are started
by HyperDoc to run Axiom examples when you click on their text. When you have finished
examining or modifying the example and you do not want the extra window around anymore,
issue

)close

to the Axiom prompt in the window.

If you try to close down the last remaining interpreter client process, Axiom will offer to
close down the entire Axiom session and return you to the operating system by displaying
something like

This is the last Axiom session. Do you want to kill Axiom?

Type “y” (followed by the Return key) if this is what you had in mind. Type “n” (followed
by the Return key) to cancel the command.

You can use the )quietly option to force Axiom to close down the interpreter client process
without closing down the entire Axiom session.

Also See: )quit and )pquit
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8.6 )clear

User Level Required: interpreter

Command Syntax:

)clear all

)clear completely

)clear properties all

)clear properties obj1 [obj2 ...]

)clear value all

)clear value obj1 [obj2 ...]

)clear mode all

)clear mode obj1 [obj2 ...]

Command Description:

This command is used to remove function and variable declarations, definitions and values
from the workspace. To empty the entire workspace and reset the step counter to 1, issue

)clear all

To remove everything in the workspace but not reset the step counter, issue

)clear properties all

To remove everything about the object x, issue

)clear properties x

To remove everything about the objects x, y and f, issue

)clear properties x y f

The word properties may be abbreviated to the single letter “p”.

)clear p all

)clear p x

)clear p x y f

All definitions of functions and values of variables may be removed by either

)clear value all

)clear v all

This retains whatever declarations the objects had. To remove definitions and values for the
specific objects x, y and f, issue

)clear value x y f

)clear v x y f

To remove the declarations of everything while leaving the definitions and values, issue

)clear mode all

)clear m all

To remove declarations for the specific objects x, y and f, issue

)clear mode x y f

)clear m x y f

The )display names and )display properties commands may be used to see what is
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currently in the workspace.

The command

)clear completely

does everything that )clear all does, and also clears the internal system function and
constructor caches.

Also See: )display , )history , and )undo .

8.7 )compile

User Level Required: compiler

Command Syntax:

)compile

)compile fileName

)compile fileName.spad

)compile directory/fileName.spad

)compile fileName )quiet

)compile fileName )noquiet

)compile fileName )break

)compile fileName )nobreak

)compile fileName )library

)compile fileName )nolibrary

)compile fileName )vartrace

)compile fileName )constructor nameOrAbbrev

Command Description:

You use this command to invoke the Axiom library compiler. This compiles files with file
extension .spad with the Axiom system compiler. The command first looks in the standard
system directories for files with extension .spad.

Should you not want the )library command automatically invoked, call )compile with the
)nolibrary option. For example,

)compile mycode )nolibrary

By default, the )library system command exposes all domains and categories it processes.
This means that the Axiom intepreter will consider those domains and categories when it is
trying to resolve a reference to a function. Sometimes domains and categories should not be
exposed. For example, a domain may just be used privately by another domain and may not
be meant for top-level use. The )library command should still be used, though, so that
the code will be loaded on demand. In this case, you should use the )nolibrary option on
)compile and the )noexpose option in the )library command. For example,

)compile mycode.spad )nolibrary

)library mycode )noexpose

Once you have established your own collection of compiled code, you may find it handy to



8.8. )DISPLAY 179

use the )dir option on the )library command. This causes )library to process all compiled
code in the specified directory. For example,

)library )dir /u/jones/quantum

You must give an explicit directory after )dir, even if you want all compiled code in the
current working directory processed.

)library )dir .

You can compile category, domain, and package constructors contained in files with file
extension .spad. You can compile individual constructors or every constructor in a file.

The full filename is remembered between invocations of this command and )edit commands.
The sequence of commands

)compile matrix.spad

)edit

)compile

will call the compiler, edit, and then call the compiler again on the file matrix.spad. If you
do not specify a directory, the working current directory (see description of command )cd )
is searched for the file. If the file is not found, the standard system directories are searched.

If you do not give any options, all constructors within a file are compiled. Each constructor
should have an )abbreviation command in the file in which it is defined. We suggest that
you place the )abbreviation commands at the top of the file in the order in which the
constructors are defined. The list of commands serves as a table of contents for the file.

The )library option causes directories containing the compiled code for each constructor
to be created in the working current directory. The name of such a directory consists of
the constructor abbreviation and the .nrlib file extension. For example, the directory
containing the compiled code for the MATRIX constructor is called MATRIX.nrlib. The
)nolibrary option says that such files should not be created.

The )vartrace option causes the compiler to generate extra code for the constructor to sup-
port conditional tracing of variable assignments. Without this option, this code is suppressed
and one cannot use the )vars option for the trace command.

The )constructor option is used to specify a particular constructor to compile. All other
constructors in the file are ignored. The constructor name or abbreviation follows )constructor.
Thus either

)compile matrix.spad )constructor RectangularMatrix

or

)compile matrix.spad )constructor RMATRIX

compiles the RectangularMatrix constructor defined in matrix.spad.

The )break and )nobreak options determine what the compiler does when it encounters an
error. )break is the default and it indicates that processing should stop at the first error.
The value of the )set break variable then controls what happens.

Also See: )abbreviation , )edit , and )library .

8.8 )display

User Level Required: interpreter
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Command Syntax:

)display all

)display properties

)display properties all

)display properties [obj1 [obj2 ...]]

)display value all

)display value [obj1 [obj2 ...]]

)display mode all

)display mode [obj1 [obj2 ...]]

)display names

)display operations opName

Command Description:

This command is used to display the contents of the workspace and signatures of functions
with a given name.

The command

)display names

lists the names of all user-defined objects in the workspace. This is useful if you do not wish
to see everything about the objects and need only be reminded of their names.

The commands

)display all

)display properties

)display properties all

all do the same thing: show the values and types and declared modes of all variables in
the workspace. If you have defined functions, their signatures and definitions will also be
displayed.

To show all information about a particular variable or user functions, for example, something
named d, issue

)display properties d

To just show the value (and the type) of d, issue

)display value d

To just show the declared mode of d, issue

)display mode d

All modemaps for a given operation may be displayed by using )display operations. A
modemap is a collection of information about a particular reference to an operation. This
includes the types of the arguments and the return value, the location of the implementation
and any conditions on the types. The modemap may contain patterns. The following displays
the modemaps for the operation complex:

)d op complex

Also See: )clear , )history , )set , )show , and )what .
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8.9 )edit

User Level Required: interpreter

Command Syntax:

)edit [filename]

Command Description:

This command is used to edit files. It works in conjunction with the )read and )compile

commands to remember the name of the file on which you are working. By specifying the
name fully, you can edit any file you wish. Thus

)edit /u/julius/matrix.input

will place you in an editor looking at the file /u/julius/matrix.input. By default, the
editor is vi, but if you have an EDITOR shell environment variable defined, that editor will
be used. When Axiom is running under the X Window System, it will try to open a separate
xterm running your editor if it thinks one is necessary. For example, under the Korn shell,
if you issue

export EDITOR=emacs

then the emacs editor will be used by )edit.

If you do not specify a file name, the last file you edited, read or compiled will be used. If
there is no “last file” you will be placed in the editor editing an empty unnamed file.

It is possible to use the )system command to edit a file directly. For example,

)system emacs /etc/rc.tcpip

calls emacs to edit the file.

Also See: )system , )compile , and )read .

8.10 )fin

User Level Required: development

Command Syntax:

)fin

Command Description:

This command is used by Axiom developers to leave the Axiom system and return to the
underlying Common Lisp system. To return to Axiom, issue the “(|spad|)” function call
to Common Lisp.

Also See: )pquit and )quit .

8.11 )frame

User Level Required: interpreter

Command Syntax:

)frame new frameName
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)frame drop [frameName]

)frame next

)frame last

)frame names

)frame import frameName [objectName1 [objectName2 ...]]

)set message frame on | off

)set message prompt frame

Command Description:

A frame can be thought of as a logical session within the physical session that you get
when you start the system. You can have as many frames as you want, within the limits
of your computer’s storage, paging space, and so on. Each frame has its own step number,
environment and history. You can have a variable named a in one frame and it will have
nothing to do with anything that might be called a in any other frame.

Some frames are created by the HyperDoc program and these can have pretty strange names,
since they are generated automatically. To find out the names of all frames, issue

)frame names

It will indicate the name of the current frame.

You create a new frame “quark” by issuing

)frame new quark

The history facility can be turned on by issuing either )set history on or )history )on.
If the history facility is on and you are saving history information in a file rather than in
the Axiom environment then a history file with filename quark.axh will be created as you
enter commands. If you wish to go back to what you were doing in the “initial” frame, use

)frame next

or

)frame last

to cycle through the ring of available frames to get back to “initial”.

If you want to throw away a frame (say “quark”), issue

)frame drop quark

If you omit the name, the current frame is dropped.

If you do use frames with the history facility on and writing to a file, you may want to delete
some of the older history files. These are directories, so you may want to issue a command
like rm -r quark.axh to the operating system.

You can bring things from another frame by using )frame import. For example, to bring
the f and g from the frame “quark” to the current frame, issue

)frame import quark f g

If you want everything from the frame “quark”, issue

)frame import quark

You will be asked to verify that you really want everything.

There are two )set flags to make it easier to tell where you are.
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)set message frame on | off

will print more messages about frames when it is set on. By default, it is off.

)set message prompt frame

will give a prompt that looks like

initial (1) ->

when you start up. In this case, the frame name and step make up the prompt.

Also See: )history and )set .

8.12 )hd

User Level Required: interpreter

Command Syntax:

)hd

Command Description:

This command will start the HyperDoc facility if it is not running. Note that if it issues the
message:

binding UNIX server socket: Address already in use

(HyperDoc) Warning: Not connected to AXIOM Server!

then you probably already had HyperDoc running and the new copy cannot connect. In this
circumstance HyperDoc will still work but certain interactions with Axiom will not, such as
the Basic Commands facility.

8.13 )help

User Level Required: interpreter

Command Syntax:

)help

)help commandName

Command Description:

This command displays help information about system commands. If you issue

)help

then this very text will be shown. You can also give the name or abbreviation of a system
command to display information about it. For example,

)help clear

will display the description of the )clear system command.

All this material is available in the Axiom User Guide and in HyperDoc. In HyperDoc,
choose the Commands item from the Reference menu.
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8.14 )history

User Level Required: interpreter

Command Syntax:

)history )on

)history )off

)history )write historyInputFileName

)history )show [n] [both]

)history )save savedHistoryName

)history )restore [savedHistoryName]

)history )reset

)history )change n

)history )memory

)history )file

%

%%(n)

)set history on | off

Command Description:

The history facility within Axiom allows you to restore your environment to that of another
session and recall previous computational results. Additional commands allow you to review
previous input lines and to create an .input file of the lines typed to Axiom.

Axiom saves your input and output if the history facility is turned on (which is the default).
This information is saved if either of

)set history on

)history )on

has been issued. Issuing either

)set history off

)history )off

will discontinue the recording of information.

Whether the facility is disabled or not, the value of % in Axiom always refers to the result
of the last computation. If you have not yet entered anything, % evaluates to an object of
type Variable(’%). The function %% may be used to refer to other previous results if the
history facility is enabled. In that case, %%(n) is the output from step n if n > 0. If n <

0, the step is computed relative to the current step. Thus %%(-1) is also the previous step,
%%(-2), is the step before that, and so on. If an invalid step number is given, Axiom will
signal an error.

The environment information can either be saved in a file or entirely in memory (the default).
Each frame has its own history database. When it is kept in a file, some of it may also be
kept in memory for efficiency. When the information is saved in a file, the name of the file is
of the form FRAME.axh where “FRAME” is the name of the current frame. The history
file is placed in the current working directory. Note that these history database files are not
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text files (in fact, they are directories themselves), and so are not in human-readable format.

The options to the )history command are as follows:

)change n will set the number of steps that are saved in memory to n. This option only
has effect when the history data is maintained in a file. If you have issued )history

)memory (or not changed the default) there is no need to use )history )change.

)on will start the recording of information. If the workspace is not empty, you will be asked
to confirm this request. If you do so, the workspace will be cleared and history data
will begin being saved. You can also turn the facility on by issuing )set history on.

)off will stop the recording of information. The )history )show command will not work
after issuing this command. Note that this command may be issued to save time, as
there is some performance penalty paid for saving the environment data. You can also
turn the facility off by issuing )set history off.

)file indicates that history data should be saved in an external file on disk.

)memory indicates that all history data should be kept in memory rather than saved in a
file. Note that if you are computing with very large objects it may not be practical to
kept this data in memory.

)reset will flush the internal list of the most recent workspace calculations so that the data
structures may be garbage collected by the underlying Common Lisp system. Like
)history )change, this option only has real effect when history data is being saved
in a file.

)restore [savedHistoryName ] completely clears the environment and restores it to a saved
session, if possible. The )save option below allows you to save a session to a file with
a given name. If you had issued )history )save jacobi the command )history

)restore jacobi would clear the current workspace and load the contents of the
named saved session. If no saved session name is specified, the system looks for a file
called last.axh.

)save savedHistoryName is used to save a snapshot of the environment in a file. This file
is placed in the current working directory. Use )history )restore to restore the
environment to the state preserved in the file. This option also creates an input file
containing all the lines of input since you created the workspace frame (for example,
by starting your Axiom session) or last did a )clear all or )clear completely.

)show [n [both]] can show previous input lines and output results. )show will display up
to twenty of the last input lines (fewer if you haven’t typed in twenty lines). )show n
will display up to n of the last input lines. )show both will display up to five of the
last input lines and output results. )show n both will display up to n of the last input
lines and output results.

)write historyInputFile creates an .input file with the input lines typed since the start
of the session/frame or the last )clear all or )clear completely. If historyInput-
FileName does not contain a period (“.”) in the filename, .input is appended to
it. For example, )history )write chaos and )history )write chaos.input both
write the input lines to a file called chaos.input in your current working directory. If
you issued one or more )undo commands, )history )write eliminates all input lines
backtracked over as a result of )undo. You can edit this file and then use )read to
have Axiom process the contents.

Also See: )frame , )read , )set , and )undo .
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8.15 )library

User Level Required: interpreter

Command Syntax:

)library libName1 [libName2 ...]

)library )dir dirName

)library )only objName1 [objlib2 ...]

)library )noexpose

Command Description:

This command replaces the )load system command that was available in Axiom releases
before version 2.0. The )library command makes available to Axiom the compiled objects
in the libraries listed.

For example, if you )compile dopler.as in your home directory, issue )library dopler

to have Axiom look at the library, determine the category and domain constructors present,
update the internal database with various properties of the constructors, and arrange for the
constructors to be automatically loaded when needed. If the )noexpose option has not been
given, the constructors will be exposed (that is, available) in the current frame.

If you compiled a file with the Spad compiler, you will have an nrlib present, for exam-
ple, DOPLER.nrlib, where DOPLER is a constructor abbreviation. The command )library

DOPLER will then do the analysis and database updates as above.

To tell the system about all libraries in a directory, use )library )dir dirName where
dirName is an explicit directory. You may specify “.” as the directory, which means the
current directory from which you started the system or the one you set via the )cd command.
The directory name is required.

You may only want to tell the system about particular constructors within a library. In this
case, use the )only option. The command )library dopler )only Test1 will only cause
the Test1 constructor to be analyzed, autoloaded, etc..

Finally, each constructor in a library are usually automatically exposed when the )library
command is used. Use the )noexpose option if you not want them exposed. At a later time
you can use )set expose add constructor to expose any hidden constructors.

Also See: )cd , )compile , )frame , and )set .

8.16 )lisp

User Level Required: development

Command Syntax:

)lisp [lispExpression]

Command Description:

This command is used by Axiom system developers to have single expressions evaluated by
the Common Lisp system on which Axiom is built. The lispExpression is read by the Com-
mon Lisp reader and evaluated. If this expression is not complete (unbalanced parentheses,
say), the reader will wait until a complete expression is entered.
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Since this command is only useful for evaluating single expressions, the )fin command may
be used to drop out of Axiom into Common Lisp.

Also See: )system , )boot , and )fin .

8.17 )ltrace

User Level Required: development

Command Syntax:

This command has the same arguments as options as the )trace command.

Command Description:

This command is used by Axiom system developers to trace Common Lisp or BOOT func-
tions. It is not supported for general use.

Also See: )boot , )lisp , and )trace .

8.18 )pquit

User Level Required: interpreter

Command Syntax:

)pquit

Command Description:

This command is used to terminate Axiom and return to the operating system. Other than
by redoing all your computations or by using the )history )restore command to try to
restore your working environment, you cannot return to Axiom in the same state.

)pquit differs from the )quit in that it always asks for confirmation that you want to
terminate Axiom (the “p” is for “protected”). When you enter the )pquit command, Axiom
responds

Please enter y or yes if you really want to leave the interactive
environment and return to the operating system:

If you respond with y or yes, Axiom will terminate and return you to the operating system
(or the environment from which you invoked the system). If you responded with something
other than y or yes, then the message

You have chosen to remain in the Axiom interactive environment.

will be displayed and, indeed, Axiom would still be running.

Also See: )fin , )history , )close , )quit , and )system .

8.19 )quit

User Level Required: interpreter

Command Syntax:
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)quit

)set quit protected | unprotected

Command Description:

This command is used to terminate Axiom and return to the operating system. Other than
by redoing all your computations or by using the )history )restore command to try to
restore your working environment, you cannot return to Axiom in the same state.

)quit differs from the )pquit in that it asks for confirmation only if the command

)set quit protected

has been issued. Otherwise, )quit will make Axiom terminate and return you to the oper-
ating system (or the environment from which you invoked the system).

The default setting is )set quit protected so that )quit and )pquit behave in the same
way. If you do issue

)set quit unprotected

we suggest that you do not (somehow) assign )quit to be executed when you press, say, a
function key.

Also See: )fin , )history , )close , )pquit , and )system .

8.20 )read

User Level Required: interpreter

Command Syntax:

)read [fileName]

)read [fileName] [)quiet] [)ifthere]

Command Description:

This command is used to read .input files into Axiom. The command

)read matrix.input

will read the contents of the file matrix.input into Axiom. The “.input” file extension is
optional.

This command remembers the previous file you edited, read or compiled. If you do not
specify a file name, the previous file will be read.

The )ifthere option checks to see whether the .input file exists. If it does not, the )read

command does nothing. If you do not use this option and the file does not exist, you are
asked to give the name of an existing .input file.

The )quiet option suppresses output while the file is being read.

Also See: )compile , )edit , and )history .

8.21 )set

User Level Required: interpreter
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Command Syntax:

)set

)set label1 [... labelN]

)set label1 [... labelN] newValue

Command Description:

The )set command is used to view or set system variables that control what messages are
displayed, the type of output desired, the status of the history facility, the way Axiom user
functions are cached, and so on. Since this collection is very large, we will not discuss them
here. Rather, we will show how the facility is used. We urge you to explore the )set options
to familiarize yourself with how you can modify your Axiom working environment. There is
a HyperDoc version of this same facility available from the main HyperDoc menu.

The )set command is command-driven with a menu display. It is tree-structured. To see
all top-level nodes, issue )set by itself.

)set

Variables with values have them displayed near the right margin. Subtrees of selections have
“...” displayed in the value field. For example, there are many kinds of messages, so issue
)set message to see the choices.

)set message

The current setting for the variable that displays whether computation times are displayed
is visible in the menu displayed by the last command. To see more information, issue

)set message time

This shows that time printing is on now. To turn it off, issue

)set message time off

As noted above, not all settings have so many qualifiers. For example, to change the )quit
command to being unprotected (that is, you will not be prompted for verification), you need
only issue

)set quit unprotected

Also See: )quit .

8.22 )show

User Level Required: interpreter

Command Syntax:

)show nameOrAbbrev

)show nameOrAbbrev )operations

)show nameOrAbbrev )attributes

Command Description: This command displays information about Axiom domain, pack-
age and category constructors. If no options are given, then the )operations option is
assumed. For example,

)show POLY

)show POLY )operations
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)show Polynomial

)show Polynomial )operations

each display basic information about the Polynomial domain constructor and then provide a
listing of operations. Since Polynomial requires a Ring (for example, Integer) as argument,
the above commands all refer to a unspecified ring R. In the list of operations, $ means
Polynomial(R).

The basic information displayed includes the signature of the constructor (the name and
arguments), the constructor abbreviation, the exposure status of the constructor, and the
name of the library source file for the constructor.

If operation information about a specific domain is wanted, the full or abbreviated domain
name may be used. For example,

)show POLY INT

)show POLY INT )operations

)show Polynomial Integer

)show Polynomial Integer )operations

are among the combinations that will display the operations exported by the domain Polynomial(Integer)
(as opposed to the general domain constructor Polynomial). Attributes may be listed by
using the )attributes option.

Also See: )display , )set , and )what .

8.23 )spool

User Level Required: interpreter

Command Syntax:

)spool [fileName]

)spool

Command Description:

This command is used to save (spool) all Axiom input and output into a file, called a spool
file. You can only have one spool file active at a time. To start spool, issue this command
with a filename. For example,

)spool integrate.out

To stop spooling, issue )spool with no filename.

If the filename is qualified with a directory, then the output will be placed in that directory.
If no directory information is given, the spool file will be placed in the current directory.
The current directory is the directory from which you started Axiom or is the directory you
specified using the )cd command.

Also See: )cd .

8.24 )synonym

User Level Required: interpreter

Command Syntax:
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)synonym

)synonym synonym fullCommand

)what synonyms

Command Description:

This command is used to create short synonyms for system command expressions. For
example, the following synonyms might simplify commands you often use.

)synonym save history )save

)synonym restore history )restore

)synonym mail system mail

)synonym ls system ls

)synonym fortran set output fortran

Once defined, synonyms can be used in place of the longer command expressions. Thus

)fortran on

is the same as the longer

)set fortran output on

To list all defined synonyms, issue either of

)synonyms

)what synonyms

To list, say, all synonyms that contain the substring “ap”, issue

)what synonyms ap

Also See: )set and )what .

8.25 )system

User Level Required: interpreter

Command Syntax:

)system cmdExpression

Command Description:

This command may be used to issue commands to the operating system while remaining in
Axiom. The cmdExpression is passed to the operating system for execution.

To get an operating system shell, issue, for example, )system sh. When you enter the key

combination, Ctrl – D (pressing and holding the Ctrl key and then pressing the D
key) the shell will terminate and you will return to Axiom. We do not recommend this way
of creating a shell because Common Lisp may field some interrupts instead of the shell. If
possible, use a shell running in another window.

If you execute programs that misbehave you may not be able to return to Axiom. If this
happens, you may have no other choice than to restart Axiom and restore the environment
via )history )restore, if possible.

Also See: )boot , )fin , )lisp , )pquit , and )quit .
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8.26 )trace

User Level Required: interpreter

Command Syntax:

)trace

)trace )off

)trace function [options]

)trace constructor [options ]

)trace domainOrPackage [options ]

where options can be one or more of

)after S-expression

)before S-expression

)break after

)break before

)cond S-expression

)count

)count n

)depth n

)local op1 [... opN ]

)nonquietly

)nt

)off

)only listOfDataToDisplay

)ops

)ops op1 [... opN ]

)restore

)stats

)stats reset

)timer

)varbreak

)varbreak var1 [... varN ]

)vars

)vars var1 [... varN ]

)within executingFunction

Command Description:

This command is used to trace the execution of functions that make up the Axiom system,
functions defined by users, and functions from the system library. Almost all options are
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available for each type of function but exceptions will be noted below.

To list all functions, constructors, domains and packages that are traced, )issue

)trace

To untrace everything that is traced, issue

)trace )off

When a function is traced, the default system action is to display the arguments to the
function and the return value when the function is exited. Note that if a function is left
via an action such as a THROW, no return value will be displayed. Also, optimization of tail
recursion may decrease the number of times a function is actually invoked and so may cause
less trace information to be displayed. Other information can be displayed or collected when
a function is traced and this is controlled by the various options. Most options will be of
interest only to Axiom system developers. If a domain or package is traced, the default
action is to trace all functions exported.

Individual interpreter, lisp or boot functions can be traced by listing their names after
)trace. Any options that are present must follow the functions to be traced.

)trace f

traces the function f. To untrace f, issue

)trace f )off

Note that if a function name contains a special character, it will be necessary to escape the
character with an underscore

)trace _/D_,1

To trace all domains or packages that are or will be created from a particular constructor,
give the constructor name or abbreviation after )trace.

)trace MATRIX

)trace List Integer

The first command traces all domains currently instantiated with Matrix. If additional do-
mains are instantiated with this constructor (for example, if you have used Matrix(Integer)

and Matrix(Float)), they will be automatically traced. The second command traces
List(Integer). It is possible to trace individual functions in a domain or package. See
the )ops option below.

The following are the general options for the )trace command.

)break after causes a Common Lisp break loop to be entered after exiting the traced
function.

)break before causes a Common Lisp break loop to be entered before entering the traced
function.

)break is the same as )break before.

)count causes the system to keep a count of the number of times the traced function is
entered. The total can be displayed with )trace )stats and cleared with )trace

)stats reset.

)count n causes information about the traced function to be displayed for the first n exe-
cutions. After the n-th execution, the function is untraced.

)depth n causes trace information to be shown for only n levels of recursion of the traced
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function. The command

)trace fib )depth 10

will cause the display of only 10 levels of trace information for the recursive execution
of a user function fib.

)math causes the function arguments and return value to be displayed in the Axiommonospace
two-dimensional math format.

)nonquietly causes the display of additional messages when a function is traced.

)nt This suppresses all normal trace information. This option is useful if the )count or
)timer options are used and you are interested in the statistics but not the function
calling information.

)off causes untracing of all or specific functions. Without an argument, all functions, con-
structors, domains and packages are untraced. Otherwise, the given functions and other
objects are untraced. To immediately retrace the untraced functions, issue )trace

)restore.

)only listOfDataToDisplay causes only specific trace information to be shown. The items
are listed by using the following abbreviations:

a display all arguments

v display return value

1 display first argument

2 display second argument

15 display the 15th argument, and so on

)restore causes the last untraced functions to be retraced. If additional options are present,
they are added to those previously in effect.

)stats causes the display of statistics collected by the use of the )count and )timer options.

)stats reset resets to 0 the statistics collected by the use of the )count and )timer

options.

)timer causes the system to keep a count of execution times for the traced function. The
total can be displayed with )trace )stats and cleared with )trace )stats reset.

)varbreak var1 [... varN ] causes a Common Lisp break loop to be entered after the as-
signment to any of the listed variables in the traced function.

)vars causes the display of the value of any variable after it is assigned in the traced function.
Note that library code must have been compiled using the )vartrace option in order
to support this option.

)vars var1 [... varN ] causes the display of the value of any of the specified variables after
they are assigned in the traced function. Note that library code must have been
compiled using the )vartrace option in order to support this option.

)within executingFunction causes the display of trace information only if the traced func-
tion is called when the given executingFunction is running.

The following are the options for tracing constructors, domains and packages.

)local [ op1 [. . . opN]] causes local functions of the constructor to be traced. Note that
to untrace an individual local function, you must use the fully qualified internal name,
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using the escape character before the semicolon.

)trace FRAC )local

)trace FRAC_;cancelGcd )off

)ops op1 [... opN ] By default, all operations from a domain or package are traced when
the domain or package is traced. This option allows you to specify that only particular
operations should be traced. The command

)trace Integer )ops min max _+ _-

traces four operations from the domain Integer. Since + and - are special characters,
it is necessary to escape them with an underscore.

Also See: )boot , )lisp , and )ltrace .

8.27 )undo

User Level Required: interpreter

Command Syntax:

)undo

)undo integer

)undo integer [option ]

)undo )redo

where option is one of

)after

)before

Command Description:

This command is used to restore the state of the user environment to an earlier point in the
interactive session. The argument of an )undo is an integer which must designate some step
number in the interactive session.

)undo n

)undo n )after

These commands return the state of the interactive environment to that immediately after
step n. If n is a positive number, then n refers to step nummber n. If n is a negative number,
it refers to the n-th previous command (that is, undoes the effects of the last −n commands).

A )clear all resets the )undo facility. Otherwise, an )undo undoes the effect of )clear
with options properties, value, and mode, and that of a previous undo. If any such system
commands are given between steps n and n+ 1 (n > 0), their effect is undone for )undo m

for any 0 < m ≤ n..

The command )undo is equivalent to )undo -1 (it undoes the effect of the previous user
expression). The command )undo 0 undoes any of the above system commands issued since
the last user expression.

)undo n )before

This command returns the state of the interactive environment to that immediately before
step n. Any )undo or )clear system commands given before step n will not be undone.
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)undo )redo

This command reads the file redo.input. created by the last )undo command. This file
consists of all user input lines, excluding those backtracked over due to a previous )undo.

Also See: )history . The command )history )write will eliminate the “undone” com-
mand lines of your program.

8.28 )what

User Level Required: interpreter

Command Syntax:

)what categories pattern1 [pattern2 ...]

)what commands pattern1 [pattern2 ...]

)what domains pattern1 [pattern2 ...]

)what operations pattern1 [pattern2 ...]

)what packages pattern1 [pattern2 ...]

)what synonym pattern1 [pattern2 ...]

)what things pattern1 [pattern2 ...]

)apropos pattern1 [pattern2 ...]

Command Description:

This command is used to display lists of things in the system. The patterns are all strings
and, if present, restrict the contents of the lists. Only those items that contain one or more
of the strings as substrings are displayed. For example,

)what synonym

displays all command synonyms,

)what synonym ver

displays all command synonyms containing the substring “ver”,

)what synonym ver pr

displays all command synonyms containing the substring “ver” or the substring “pr”. Out-
put similar to the following will be displayed

---------------- System Command Synonyms -----------------

user-defined synonyms satisfying patterns:

ver pr

)apr ........................... )what things

)apropos ....................... )what things

)prompt ........................ )set message prompt

)version ....................... )lisp *yearweek*

Several other things can be listed with the )what command:

categories displays a list of category constructors.

commands displays a list of system commands available at your user-level. Your user-level is
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set via the )set userlevel command. To get a description of a particular command,
such as “)what”, issue )help what.

domains displays a list of domain constructors.

operations displays a list of operations in the system library. It is recommended that you
qualify this command with one or more patterns, as there are thousands of operations
available. For example, say you are looking for functions that involve computation of
eigenvalues. To find their names, try )what operations eig. A rather large list of
operations is loaded into the workspace when this command is first issued. This list
will be deleted when you clear the workspace via )clear all or )clear completely.
It will be re-created if it is needed again.

packages displays a list of package constructors.

synonym lists system command synonyms.

things displays all of the above types for items containing the pattern strings as substrings.
The command synonym )apropos is equivalent to )what things.

Also See: )display , )set , and )show .

8.29 Makefile

This book is actually a literate program[Knut92] and can contain executable source code.
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∗ Multiplication, 30
∗∗ Exponentiation, 30
+ Addition, 30
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< less than, 30
<= less than or equal, 30
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)close, 176, 187, 188
)compile, 176, 178, 181, 186, 188
)display, 38, 178, 179, 190, 197
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)help, 183
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)set, 175, 180, 183, 185, 186, 188, 190, 191, 197
)set streams calculate, 84
)show, 180, 189, 197
)spool, 176, 190
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)system, 38, 175, 181, 187, 188, 191
)trace, 187, 192
)undo, 39, 178, 185, 195
)what, 38, 180, 190, 191, 196
++ comments, 25, 37
+++ comments, 25, 37

– comments, 25, 37
. Record selector, 137
: declaration, 134
::, 23
:: conversion, 26, 37, 38, 131, 144
:: failure, 27
; output suppression, 33, 36
# list length, 43
$ package call, 131, 149
$ package calling, 37, 38
%, 7, 19, 27, 36
%%, 19, 36
%e, 24
%i, 24
%infinity, 24
%minusInfinity, 24, 83
%pi, 24, 67
%plusInfinity, 24, 83
escape, 25, 37

abbreviation, 134, 174
– constructor, 133
abbreviation category, 175
abbreviation domain, 175
abbreviation package, 175
abbreviation query, 175
abbreviation remove, 175
abs, 28
acos, 30
Ada, 11
adaptive, 100
adaptive plotting, 104, 120, 121
Aldor, 130
– Spad, 130
Any, 125, 143, 152
APL, 130
append, 42
appendPoint , 109
apropos, 197
arctan, 90
array
– flexible, 74
– one-dimensional, 73
– two-dimensional, 77
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asin, 30
assignment, 21
– delayed, 21
– immediate, 21
assignment delayed, 56
assignment immediate, 30
AssociationList, 75
atan, 30, 90
axiom, 17

badge, 144
balanced binary tree, 75
BalancedBinaryTree, 74
BasicOperator, 91
binary search tree, 74, 75
BinarySearchTree, 74
binarySearchTree, 75
bit? , 12
Bits, 50, 74
bits, 51, 74
Blocks, 53
blue, 99
Boolean, 131
boot, 175
break, 58–60
by for, 65

case, 139, 142
Category, 129
category, 12, 127, 129, 145
category exports, 129
cd, 165–167, 176, 190
character set, 168
characteristic , 130
Choices, 58
clear, 177
Clef, 18
clip, 100
close, 163, 176
coefficient, 5, 7
coerce , 110
Color, 99
color, 99, 163
– multiplication, 99
– shade, 100
colormap, 118
Colors, 99
command line editor, 18
CommutativeRing, 145
compactFraction, 34
compile, 176, 178
complete, 49
complex, 68
complex , 180

complex numbers, 31, 67
Complex(Fraction(Integer)), 129
Complex(Integer), 131
ComplexCategory, 180
complexIntegrate, 88
complexLimit, 83, 84
complexSolve, 93
component , 109, 110
computation timings
– displaying, 189
concat
– concat

, 72
concat , 127, 150
concat 43, 72
conjugate, 68
conjugate, complex numbers, 32
cons, 42
constructor
– abbreviation, 133
– domain, 127
– exposed, 153
– hidden, 153
– package, 130
continuedFraction, 33, 68
conversion, 23
coordinate system
– parabolic cylindrical, 114
coordinates, 100
copy, 46
copyInto 50
cos, 30
cosh, 90
curve
– non-singular, 99
– parametric plane, 97
– plane algebraic, 97
– smooth, 99
curveColor, 100
cyclic list, 72

D Derivatives, 86
decimal, 33, 68
DecimalExpansion, 33
declaration, 21
declarations, 134
delayed assignment, 21, 56
delete , 127
delete 51
derivative, 86
Derivatives, 86
destructive operations, 24
determinant, 78
diagonalMatrix, 79
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differentiation, 86
– formal, 87
– partial, 86
digits, 67
digits , 67
digits function, 32
directory
– default for searching, 165
– for spool files, 190
display, 179
display operation, 156
DistributedMultivariatePolynomial, 82
dithering, 119
divide, 24, 30
Domain, 127
domain, 11, 125
domain constructor, 127
DoubleFloat, 67

edit, 176, 181
editing files, 181
elt, 44
emacs, 181
empty?, 42, 74
Equation, 91
erf, 90
eval, 31, 86, 87
even?, 29
exiting Axiom, 18
exp, 67, 68, 84–86, 90
expand, 47
exports
– category, 129
– Domain, 130
exposed
– constructor, 153
exposed.lsp, 153
exposure
– group, 153
exquo , 141
extract 74

factor, 23, 30, 66, 68, 72, 78
factor, complex numbers, 32
FactoredFunctions2, 133
factorial, 24, 30, 78, 79, 85, 126
Fibonacci, 48
Field, 128
field, 128
file
– .Xdefaults, 163
– .Xdefaults, 103, 119, 123
– .axiom.input, 166
– exposed.lsp, 153

– history, 182
– input, 79, 165, 173, 184, 188

where found, 165
– sending output to, 166
– spool, 190
– start-up profile, 166
fin, 181
first, 42, 72
first , 71
firstDenom, 35
firstNumer, 35
Flexible Arrays, 51
FlexibleArray, 50
flexibleArray, 74
Float, 67, 125, 149
floating point, 67
font, 163
for, 63
for by, 65
for list, 63
for segment, 63
FORTRAN, 11
FORTRAN output format, 169
– arrays, 171
– breaking into multiple statements, 169
– data types, 170
– integers vs. floats, 170
– line length, 169
– optimization level, 170
– precision, 171
Fraction, 15, 128, 130, 141, 149, 151
fraction
– partial, 68
Fraction(Complex(Integer)), 129
Fraction(Integer), 128
fractionPart, 27
frame, 155, 181
– exposure and, 155
frame drop, 182
frame import, 182
frame last, 182
frame names, 182
frame new, 182
frame next, 182
function, 78
– calling, 23
– piece-wise definition, 78

Gaussian Integers, 128
gcd, 30
generate, 48
getGraph , 112
Gröbner, 83
graphics, 95
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– .Xdefaults, 123
button font, 123
graph label font, 123
graph number font, 123
inverting background, 123
lighting font, 123
message font, 124
monochrome, 124
PostScript file name, 103, 119, 124
title font, 124
unit label font, 124
volume label font, 124

– 2D commands
axes, 105
close, 105
connect, 105
graphs, 105
key, 105
move, 105
options, 105
points, 105
resize, 105
scale, 105
state of graphs, 105
translate, 106

– 2D control-panel, 101
axes, 103
box, 103
buttons, 103
clear, 103
drop, 103
hide, 103
lines, 103
messages, 101
multiple graphs, 103
pick, 103
points, 103
ps, 103
query, 103
quit, 103
reset, 103
scale, 101
transformations, 101
translate, 101
units, 103

– 2D defaults
available viewport writes, 105

– 3D commands
axes, 120
close, 120
control-panel, 120
define color, 120
deltaX default, 122
deltaY default, 122

diagonals, 121
drawing style, 121
eye distance, 121
intensity, 122
key, 121
lighting, 121
modify point data, 121
move, 121
outline, 121
perspective, 121
phi default, 122
reset, 121
resize, 121
rotate, 121
scale, 123
scale default, 123
showRegion, 121
subspace, 122
theta default, 123
title, 122
translate, 122
viewpoint, 122

– 3D control-panel, 116
axes, 119
bounds, 119
buttons, 118
bw, 119
clip volume, 120
clipping on, 120
color map, 118
eye reference, 120
hide, 119
intensity, 120
light, 119
messages, 118
move xy, 119
move z, 119
outline, 119
perspective, 120
pixmap, 119
ps, 119
quit, 119
reset, 119
rotate, 117
save, 119
scale, 117
shade, 118
show clip region, 120
smooth, 118
solid, 118
transformations, 117
translate, 117
view volume, 120
wire, 118
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– 3D defaults
available viewport writes, 123
reset viewport defaults, 122
tube points, 122
tube radius, 122
var1 steps, 122
var2 steps, 122
viewport position, 122
viewport size, 123
viewport writes, 123

– 3D options, 115
– color, 99

color function, 99
hue function, 99
multiply function, 99
number of hues, 99
primary color functions, 99

– palette, 100
– plot3d defaults

adaptive, 120
set adaptive, 121
set max points, 121
set min points, 121
set screen resolution, 121

– set 2D defaults
adaptive, 104
axes color, 104
clip points, 104
line color, 104
max points, 104
min points, 104
point color, 104
point size, 104
reset viewport, 104
screen resolution, 104
to scale, 104
units color, 104
viewport position, 104
viewport size, 104
write viewport, 105

– Xdefaults
2d, 124

GraphImage, 106, 109, 110
green, 99
group
– exposure, 153
groupSqrt, 81

HashTable, 75
hd, 183
heap, 74
help, 183
history, 184
history )change, 185

history )off, 184
history )on, 184
history )restore, 176
history )save, 176
history )write, 166, 176
hither clipping plane, 120
HomogeneousDistributedMultivariatePolynomial,

83
howMany, 75
hue, 99
HyperDoc, 17
HyperDoc, 159
HyperDoc X Window System defaults, 163

IBM Script Formula Format, 169
if-then-else, 58
imag, complex numbers, 31
immediate assignment, 21, 30
∞ (= %infinity), 24
insert , 127
insert 51, 74
Integer, 12, 13, 125, 130, 131, 141, 147
IntegerMod, 35, 70
IntegralDomain, 128, 145
integrate, 88, 90
integration, 88
interrupt, 17
inv , 151
iterate, 59, 63

KeyedAccessFile, 75
Korn shell, 181

last, 45
lcm, 30
Legendre Polynomial, 3
Legendre polynomials, 4
Library, 75
library, 186
– operations

* , 12–15, 127, 129
+ , 12–14, 127, 129, 130, 154
- , 12–14, 127, 147
/ , 128, 130, 149
= , 130
0 , 13
1 , 13

limit, 83, 84
– of function with parameters, 83
lisp, 186
List, 71, 72, 127
list, 41
– cyclic, 72
log, 85
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Loops, 58
Loops repeat, 58
ltrace, 187

macro
– predefined, 24
makeGraphImage , 106
makeViewport2D , 109
map, 66
map , 151
map 50
Matrix, 15, 77
matrix, 77
– creating, 77
– Hilbert, 77
Matrix(Float), 125
MatrixCategoryFunctions2, 151
max, 30
member?, 43
merge 52
min, 30
mode, 125, 133
modTree, 75
Modula 2, 11
monospace 2D output format, 167
multiset, 75
MultivariatePolynomial, 82, 133

negative?, 28
nextPrime, 48
non-singular curve, 99
not Logical Negation, 30
nthFractionalTerm, 35
numberOfFractionalTerms, 34
numberOfHues() , 99

Octonion, 71
odd?, 29
odd? , 12
one?, 29
OneDimensionalArray, 49, 133
oneDimensionalArray, 73
operation name completion, 18
operator, 87
operator function, 87, 91, 92
OrderedCompletion, 83
output formats
– common features, 166
– FORTRAN, 169
– IBM Script Formula Format, 169
– line length, 167
– monospace 2D, 167
– sending to file, 166
– sending to screen, 167

– starting, 166
– stopping, 166
– TEX, 168
outputFixed, 33
outputFloating, 32
OutputForm, 154
outputGeneral, 33
outputSpacing, 32

package, 14, 130
padicFraction, 34, 69
Palette, 100
Palettes, 99
parabolic cylindrical coordinate system, 114
parametric plane curve, 97
parentheses
– using with types, 131–133
partialFraction, 34, 68
PASCAL, 11
pattern matching, 81
PendantTree, 74
%%, 19
peril, 148
Permanent, 77
permutation matrix, 79
perspective , 121
Phong
– illumination model, 118
– smooth shading model, 119
physicalLength, 52
physicalLength 52
π (= %pi), 24
piece-wise function definition, 78
pile, 53, 58
plane algebraic curve, 98
pointColor, 100
polynomial, 82
Polynomial(Integer), 125
Polynomial(R), 82
PolynomialFunction2(R,S), 130
positive?, 28
PositiveInteger, 126, 131
PostScript, 96, 103, 119, 124
pquit, 187, 188
pretend, 148
prime?, 29
PrimeField, 35, 69
primes, 75, 76
priority queue, 74
prompt, 17
– with frame name, 183
Puiseux series, 85
putGraph , 112

quatern, 24, 71
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Quaternion, 71
quit, 166, 187
quo Quotient, 30
quote, 23, 136, 142
quote symbols, 23

radical, 69
radicalSolve, 8, 93
radix, 33, 66, 69
RadixExpansion, 33
range, 100
ratDenom, 71
read, 165, 176, 188
real, complex numbers, 31
Record, 76, 125, 136
Record, 76
record, 76
– difference from union, 142
– selector, 136
red, 99
reduce, 79
rem, 76
rem Remainder, 30
removeDuplicates, 43
removeDuplicates 51
repeat, 60
repeat Loops, 58
resolve, 151
rest, 42, 72
rest , 71
result
– previous, 19
retract, 126
retractIfCan , 141
return, 58, 59
reverse, 43
Ring, 13, 14, 77, 127, 129
roman, 66
Roman numerals, 66
rootOf, 70
round, 27
rule, 7, 81

scaling graphs, 123
scroll bar, 160
search, 75
Segmented Lists, 47
selector
– quoting, 137, 142
– record, 136
– union, 141
series, 6, 84
– power, 84
– Puiseux, 85

– Taylor, 85
seriesSolve, 93
set, 75, 188
set expose, 154
set expose add constructor, 154
set expose add group, 154
set expose drop constructor, 154
set expose drop group, 154
set fortran, 169
set fortran explength, 169
set fortran ints2floats, 170
set fortran optlevel, 169, 170
set fortran precision double, 171
set fortran precision single, 171
set fortran segment, 169
set fortran startindex, 172
set history off, 184
set history on, 184
set message frame, 182
set message prompt frame, 183
set message time, 189
set output, 166
set output algebra, 167
set output characters, 168
set output fortran, 166, 169
set output length, 167
set output script, 169
set output tex, 168
set quit protected, 166, 188
set quit unprotected, 166, 188, 189
set userlevel, 197
set userlevel compiler, 173
set userlevel development, 173
set userlevel interpreter, 173
setrest
– setrest

, 72
setrest 44, 72
shade, 100
show, 156, 189
showTypeInOutput, 143
shrinkable, 52
sign, 28
simplification, 81
sin, 30, 84, 86, 96
SingleInteger, 67
sinh, 90
smooth curve, 99
solve, 8, 91, 92
sort, 43
sort 52
Spad, 130
– Aldor, 130
spad, 178
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SparseTable, 75
spool, 176, 190
sqrt, 67, 83, 90
SquareMatrix, 77, 128, 133, 144
start-up profile file, 166
step number, 17
stopping Axiom, 18
stream, 5, 72
Streams, 47
String, 50, 74, 131, 150
StringTable, 75
subdomain, 12, 126
subdomains, 146
such that, 63
swap 50
symbol
– naming, 21
symbol quoting, 23
synonym, 190
system, 191

Table, 75
table, 75
tan, 30, 90, 96
target type, 131, 150
taylor, 85
TEX output format, 168
ThreeDimensionalViewport, 119, 121, 123
timings
– displaying, 189
toScale, 100
TournamentTree, 74
trace, 78, 192
transpose, 78
tree, 74
– balanced binary, 75
– binary search, 75
truncate, 27
TwoDimensionalArray, 77
TwoDimensionalViewport, 105, 109, 112
Type, 129
type, 125
– using parentheses, 131–133
type target, 38
typeOf, 140

undo, 195
Union, 76, 125, 139
Union, 76
union, 76, 139
– difference from record, 142
– selector, 141
unit, 100
UnivariatePolynomial, 82, 133

UnivariatePuiseuxSeries, 84
UnivariateTaylorSeries, 93
UniversalSegment, 47
user-level, 173, 196

variable
– naming, 21
Vector, 50, 74, 77
vector, 50
vi, 181
Void, 131

weight, 99
what, 134, 155, 196
what categories, 196
what commands, 196
what domain, 155
what domains, 197
what operation, 155
what operations, 197
what packages, 134, 156, 197
what synonym, 197
what things, 197
while, 60
wholePart, 34
window, 17
write , 105, 119, 123

X Window System, 17, 163

zero?, 29
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